
π computation with
Montecarlo

Paolo Burgio
paolo.burgio@unimore.it

PI

› No need to explain…
– 3.1415926535897932384626433832795028841971693993751058209...

› Never end
– No algorithm can compute its value in finite time

2

Save the date!!

3

Monte-Carlo methods

› Random-based experiments

Used in

› Solving deterministic problems (e.g., π computation)

› Studying random systems

4

Monte-Carlo PI computation

Rationale behind

› Correlation between π and the area of circle

𝐴𝑐𝑖𝑟𝑐𝑙𝑒 = 𝜋 ∗ 𝑅𝑐𝑖𝑟𝑐𝑙𝑒
2

› Mmmm…

5

Of squares and circles

› Consider a square enclosing the circle. Its area is…

Sidesquare = Rcircle * 2

› So, its area is…

𝐴𝑠𝑞𝑢𝑎𝑟𝑒 = 𝑆𝑖𝑑𝑒𝑠𝑞𝑢𝑎𝑟𝑒
2 = (𝑅𝑐𝑖𝑟𝑐𝑙𝑒 ∗ 2)2

› Given that..
𝐴𝑐𝑖𝑟𝑐𝑙𝑒 = 𝜋 ∗ 𝑅𝑐𝑖𝑟𝑐𝑙𝑒

2

6

Hmmmmm…

› Hmmmmm….

𝐴𝑐𝑖𝑟𝑐𝑙𝑒

𝐴𝑠𝑞𝑢𝑎𝑟𝑒

=
𝜋 ∗𝑅𝑐𝑖𝑟𝑐𝑙𝑒

2

𝑅𝑐𝑖𝑟𝑐𝑙𝑒
2 ∗4

=
𝜋

4

› …so….

𝜋 = 4 ∗
𝐴𝑐𝑖𝑟𝑐𝑙𝑒

𝐴𝑠𝑞𝑢𝑎𝑟𝑒

7

0 1

x

1
y

Now, the problem is..

› How to find the area of a circle
– ..without knowing how much is π??

Go random!

1. Throw randomly (many) point inside the square
– Point = (x, y) with x, y { 0, Rcircle }

2. Count how many are within circle

3. Count how many are within the square

4. Compute the ratio

5. Multiply by 4

8

𝐴𝑐𝑖𝑟𝑐𝑙𝑒

𝐴𝑠𝑞𝑢𝑎𝑟𝑒

0 1

x

1
y

Optimizing the algorithm

› Consider only ¼ of the circle
– Rcircle from 0 to 1

– Sidesquare from 0 to 1

› Here, 5/6 are inside the circle
– Npoints = 6 => π = 4 * 5 / 6 = 3.33

How to compute it?

1. All points are always inside the square

2. A given point is inside the circle iff ….?

3. The more Npoints, the more precision!

› It's sooo parallel!
– Each thread generates a point and performs 2.

9

0 1

x

1
y Npoints = 6, Nin_circle = 5

Exercise

› Compute PI using Montecarlo Method
– 10k iterations

– Parametrizable

10

Let's

code!

Random number generation

› Generate random (float) number between 0 and 1
– Code/utils.c

– Credits: Francesco Bellei

11

#include <stdlib.h>

float randNumGen()

{

//Generate a random number

int random_value = rand_r(/* Add thread-unique seed here */);

//make it between 0 and 1

float unit_random = random_value / (float) RAND_MAX;

return unit_random;

}

rand vs. rand_r: thread safeness

› (Reentrant function: can be interrupted/resumed in the middle of
its execution)

› Thread safe function: can be accessed by multiple threads at the
same time

12

The rand() function returns a pseudo-random integer in the range 0 to

RAND_MAX inclusive

…

The function rand() is not reentrant or thread-safe, since it uses hidden state

that is modified on each call. This might just be the seed value to be used by
the next call, or it might be something more elaborate. In order to get
reproducible behavior in a threaded application, this state must be made explicit;
this can be done using the reentrant function rand_r().

Exercise

› Now, parallelize Montecarlo over N threads

› Need only 10k/N iterations!
– In my laptop, w/Cygwin, N = 4

› Potentially, N times faster!
– …it won't be…

› How to know the number of (virtual) cores in Unix systems
– $ cat /proc/cpuinfo

13

Let's

code!

Sequential vs parallel

› 10k iterations
– 1 rectangle = 1 iteration

– You save N time!

14

0

1

2

3

9999

T

0

1

2499

T T

0

1

2499

T

0

1

2499

T

0

1

2499

t

Timing measurements

› Enable timing analysis of sequential/parallel code
– Code/utils.c

15

#include <time.h>

#include <sys/time.h>

#define SECONDS 1000000000

unsigned long long gettime(void)

{

struct timespec t;

int r;

r = clock_gettime(CLOCK_MONOTONIC, &t);

if (r < 0)

{

printf("Error to get time! (%i)\n", r);

return -1L;

}

return (unsigned long long) t.tv_sec * SECONDS + t.tv_nsec;

}

Some hints…

› Create _printf macro
– Enables you adding/removing debug

prints

– "The problem of parallel debugging"

– Printf "THREAD_ID/NTHREADS"

› First, test with Sequential!
– Enable/disable OMP code dis/abling –

fopenmp switch

› Rely on pre-processor macro to
know whether –fopenmp was set

16

#define _printf(...) printf(__VA_ARGS__)

// #define _printf(...)

void foo(void)

{

#pragma omp parallel

{ // Parallel code

_printf("[Thread %d/%d]\n",

omp_get_thread_num(),

omp_get_num_threads());

}

}

Standard-defined macro

› But…
– "In implementations that support a preprocessor"

17

In implementations that support a preprocessor, the _OPENMP macro name is

defined to have the decimal value yyyymm where yyyy and mm are the year
and month designations of the version of the OpenMP API that the
implementation supports.

OpenMP specifications

Exercise

› Do this at home, varying N
– N = 1, 2, 4, 8, 16

– Run each experiment 3-5 times

– Put avg values in an excel, and let's discuss

18

Let's

code!

How to run the examples

› Download the Code/ folder from the course website

› Compile

› $ gcc –fopenmp code.c -o code

› Run (Unix/Linux)

$./code

› Run (Win/Cygwin)

$./code.exe

19

Let's

code!

References

› "Calcolo parallelo" website
– http://hipert.unimore.it/people/paolob/pub/PhD/index.html

› My contacts
– paolo.burgio@unimore.it

– http://hipert.mat.unimore.it/people/paolob/

› Useful links
– http://www.google.com

– http://www.openmp.org

– https://gcc.gnu.org/

› A "small blog"
– http://www.google.com

20

http://hipert.unimore.it/people/paolob/pub/PhD/index.html
mailto:paolo.burgio@unimore.it
http://www.google.com/
http://www.openmp.org/
https://gcc.gnu.org/
http://www.google.com/

