Tt computation with
Montecarlo

Paolo Burgio
paolo.burgio@unimore.it

| HigeRT

Pl

> No need to explain...
~ 3.1415926535897932384626433832795028841971693993751058209...

> Never end

— No algorithm can compute its value in finite time

Save the date!!

Monte-Carlo methods

> Random-based experiments

Used in

> Solving deterministic problems (e.g., Tt computation)

> Studying random systems

Monte-Carlo Pl computation

Rationale behind

> Correlation between Tt and the area of circle

2
circle

A = 1T *R

circle

> Mmmm...

Of squares and circles

> Consider a square enclosing the circle. Its area is...

*
S 1 desquare circle 2z
> So, its area is...
N o 2 . 2
Aspuare = Stdeggy . = (Reircle * 2)
> Given that..
_ 2
Acircle T * Rcircle

Hmmmmm...

> Hmmmmm....

2
circle — 77'-*Rcircle —
2
square Rcircle *4
Acircle
square

Now, the problem is..

> How to find the area of a circle

— ..without knowing how much is 1??

Go random!

1. Throw randomly (many) point inside the square
— Point = (x, y) with x, y {0, Rcircle }

v

2. Count how many are within circle P
3. Count how many are within the square

4. Compute the ratio Acircte

5. Multiply by 4 Asquare

Optimizing the algorithm

> Consider only % of the circle N
Rarge fromOto 1 3%
-C cle O
— Sideyyyae from0to 1 @)
> Here, 5/6 are inside the circle
— Npgs=6=>T=4%5/6=3.33 @) @)
@)
®
How to compute it? !
1. All points are always inside the square "V Npoints = 6, Nip_circle = 5

2. Agiven pointis inside the circle iff?

3. ThemoreN the more precision!

points’

> It's sooo parallel!

— Each thread generates a point and performs 2.

Let's

Exercise code!

> Compute Pl using Montecarlo Method

— 10k iterations
— Parametrizable

10

Random number generation

> Generate random (f1loat) number between 0 and 1
— Code/utils.c
— Credits: Francesco Bellei

#include <stdlib.h>
float randNumGen ()
{

//Generate a random number
int random value = rand r(/* Add thread-unique seed here */);

//make it between 0 and 1
float unit random = random value / (float) RAND MAX;

return unit random;

ey 11

randvs. rand r: thread safeness

(Reentrant function: can be interrupted/resumed in the middle of
its execution)

Thread safe function: can be accessed by multiple threads at the
same time

Let's

Exercise code!

v

Now, parallelize Montecarlo over N threads

v

Need only 10k/N iterations!
— In my laptop, w/Cygwin, N = 4

v

Potentially, N times faster!

- ...itwon't be...

v

How to know the number of (virtual) cores in Unix systems

- $ cat /proc/cpuinfo

13

Sequential vs parallel

> 10k iterations

— 1 rectangle = 1 iteration
— You save N time!

o | 0 o 0 N 0 N 0
1 1 1 1
2
3
_____________________________ 2499 | | 2499 | | 2499 | | 2499
i 9999
vV D s s s s s S S S s e

14

Timing measurements

> Enable timing analysis of sequential/parallel code
— Code/utils.c

#include <time.h>
#include <sys/time.h>

#define SECONDS 1000000000

unsigned long long gettime (void)

{

struct timespec t;
int r;

r = clock gettime (CLOCK MONOTONIC, &t);
if (r < 0)

printf ("Error to get time! (%i)\n", r);
return -11;

}

return (unsigned long long) t.tv _sec * SECONDS + t.tv nsec;

15

Some hints...

: #define printf(...) printf(VA ARGS)
> Create printf macro 1/ Baetine printel. .

— Enables you adding/removing debug void foo (void)
prints i
— "The problem of parallel debugging" 4pragma omp parallel

— Printf "THREAD ID/NTHREADS" L7/ ?arallel code
— _printf (" [Thread %d/%d]l\n",

omp get thread num(),
omp get num threads());

> First, test with Sequential! }

— Enable/disable OMP code dis/abling - }
fopenmp switch

> Rely on pre-processor macro to
know whether -fopenmp Was set

16

Standard-defined macro

OpenMP specifications

In implementations that support a preprocessor, the OPENMP macro name is
defined to have the decimal value yyyymm where yyyy and mm are the year
and month designations of the version of the OpenMP APl that the
implementation supports.

4

> But...

— "In implementations that support a preprocessor"”

17

Let's

Exercise code!

> Do this at home, varying N
- N=1,2,4,8,16
— Run each experiment 3-5 times
— Put avg values in an excel, and let's discuss

18

How to run the examples . |

> Download the Code/ folder from the course website

> Compile

» $ gcc —fopenmp code.c -o code

> Run (Unix/Linux)
S ./code
> Run (Win/Cygwin)

S ./code.exe

19

References n £

> "Calcolo parallelo" website
— http://hipert.unimore.it/people/paolob/pub/PhD/index.html

> My contacts
— paolo.burgio@unimore.it
— http://hipert.mat.unimore.it/people/paolob/

> Useful links
- http://www.google.com
— http://www.openmp.org
— https://gcc.gnu.org/

> A "small blog"

— http://www.google.com

20

http://hipert.unimore.it/people/paolob/pub/PhD/index.html
mailto:paolo.burgio@unimore.it
http://www.google.com/
http://www.openmp.org/
https://gcc.gnu.org/
http://www.google.com/

