OpenMP dynamic loops

Paolo Burgio
paolo.burgio@unimore.it

| HigeRT

Outline

> Expressing parallelism
— Understanding parallel threads

> Memory Data management
— Data clauses

> Synchronization
— Barriers, locks, critical sections

> Work partitioning

— Loops, sections, single work, tasks...

> Execution devices
— Target

Let's talk about performance

> We already saw how parallelism #> performance

— Example: aloop

— If one thread is delayed, it prevents other threads to do useful work!!

#pragma omp parallel num threads (4)
{
#pragma omp for
for (int 1=0; i<N;

{

i++)

} // (implicit) barrier

// USEFUL WORK!!

} // (implicit) barrier

y

X
A~

Let's talk about performance

> We already saw how parallelism #> performance

— Example: aloop

— If one thread is delayed, it prevents other threads to do useful work!!

#pragma omp parallel num threads (4)
{
#pragma omp for
for (int 1=0; i<N;

{

i++)

} // (implicit) barrier

// USEFUL WORK!!

barrier

} // (implicit)

y

AT S -

bl
b

€C——)\ €&— | €

Unbalanced loop partitioning

> lterations are statically assigned before entering the loop

— Might not be effective nor efficient

#pragma omp parallel for num threads (4) % % % %

for (int 1=0; i<16; 1i++)

{

/* UNBALANCED LOOP CODE */ \\\\\\\‘

mr O -

mro—
mro-—

} /* (implicit) Barrier */ E
Z; 4

Dynamic loops

> Assign iterations to threads in a dynamic manner

— At runtimel!

> Static semantic

— "Partition the loop in N, .4 Parts threads and assign them to the team”
— Naive and passive

> Dynamic semantic
— "Each thread in the team fetches an iteration (or a block of) when he's idle"
— Proactive
— Work-conservative

Dynamic loops

> Activated using the schedule clause

#pragma omp parallel for num threads (4) \ E i E i E
schedule (dynamic) i i i E i

for (int 1=0; 1<16; 1++)

{

/* UNBALANCED LOOP CODE */

} /* (implicit) Barrier */ 7 i(— —i— - - —E - == —E

The schedule clause

#pragma omp for [clause [[,] clause]...] new-line
for-loops

Where clauses can be:
private (list)

firstprivate (list)
lastprivate(list)

linear(list[: linear-step])
reduction (reduction-identifier : 1ist)
schedule ([modifier [, modifier]:]lkind[, chunk sizel)

collapse (n)
ordered]| (n)]
nowait

y

> The iteration space is divided according to the schedule clause

— kindcanbe:{static | dynamic | guided | auto | runtime }

OMP loop schedule policies

» schedule (static/[, chunk size])

— lIterations are divided into chunks of chunk size, and chunks are assigned to
threads before entering the loop

— If chunk size unspecified, = NITER/NTHREADS (with some
adjustement...)

» schedule (dynamic/[, chunk size])
— lIterations are divided into chunks of chunk size
— At runtime, each thread requests for a new chunk after finishing one
— If chunk size unspecified, then=1

Static vs. Dynamic

#pragma omp parallel for num threads (2) \
schedule(...)

for (int i=0; i<8; i++)

{

/]

} /* (implicit) Barrier */

OMP loop schedule policies (cont'd)

» schedule (guided[, chunk size])

— A mix of static and dynamic
— chunk size determined statically, assignment done dynamically

> schedule (auto)

— Programmer let compiler and/or runtime decide
— Chunk size, thread mapping..
— "I'wash my hands"

> schedule (runtime)

— Only runtime decides according to run-sched-var ICV
— If run-sched-var = auto, then implementation defined

10

Loops chunking

schedule (dynamic, NITER/NTRHD)

1)

schedule (dynamic,

schedule (static)

Schedule (dynamic)

),

IDO

%X

schedule (dynamic, 2)

N § T X

S

>

Modifiers, collapsed and ordered

#pragma omp for [clause [[,] clause]...] new-line
for-loops

Where clauses can be:
private (list)

firstprivate (list)
lastprivate(list)

linear(list[: linear-step])
reduction (reduction-identifier : 1ist)
schedule ([modifier [, modifier]:]lkind[, chunk sizel)

collapse (n)
ordered] (n)]
nowait

y

> These we won't see

- E.g.,,modifier canbe:{monothonic | nonmonothonic
— Let you tune the loop and give more information to the OMP stack
— To maximize performance

simd }

12

Static vs. dynamic loops

> So, why not always dynamic?
— For unbalanced workloads, they are more flexible
— "For balanced workload, in the worst case, they behave like static loops!"

Not always true!

> Static loops loops have a (light) cost only before the loop
— Actually, the lighter way you can distribute work in OpenMP!!
— Often a performance reference..

> Dynamic loops have a cost:

— For initializing the loop ——
— For fetching a(nother) chunk of work
— At the end of the loop S—

13

OpenMP loops overhead

schedule (dynamic, 1) schedule (dynamic, NITER/NTHRD)
schedule (dynamic)

schedule (dynamic, 2)
schedule (static)

*® X *® X *® X

_— h‘%! _— h.1! _ EIE! “ii <§E~
e - . o >
- 1 3 1 5 S| |
’ > (I [W 6 | | 3
N . - 2 °

— 2NE = I <

6 7 B <€

<ﬁﬁ <

14

Let's

Exercise code!

> Create an array of N elements
— Put inside each array element its index, multiplied by '2'
- arr[0] = 0; arr[l] = 2, arr[2] = 4; ..andsoon..

> Now, simulate unbalanced workload

— Use both static and dynamic loops
— Each thread prints iteration index i

— What do you (ShOUld) see? #pragma omp parallel for schedule(...)
for (int 1i=0; 1<NUM; i++)

{
/] ...

// Simulate iteration-dependant work
volatile long a = i * 1000000L;

while (a--)

How to run the examples . |

> Download the Code/ folder from the course website

> Compile

» $ gcc —fopenmp code.c -o code

> Run (Unix/Linux)
S ./code
> Run (Win/Cygwin)

S ./code.exe

16

References N2

> "Calcolo parallelo" website
— http://hipert.unimore.it/people/paolob/pub/PhD/index.html

> My contacts

— paolo.burgio@unimore.it

— http://hipert.mat.unimore.it/people/paolob/

> Useful links
— http://www.openmp.org

— http://www.google.com

— http://gcc.enu.org

17

http://hipert.unimore.it/people/paolob/pub/PhD/index.html
mailto:paolo.burgio@unimore.it
http://hipert.mat.unimore.it/people/paolob/
http://www.openmp.org/
http://www.google.com/
http://gcc.gnu.org/

