
Critical sections
in OpenMP

Paolo Burgio
paolo.burgio@unimore.it

Outline

› Expressing parallelism
– Understanding parallel threads

› Memory Data management
– Data clauses

› Synchronization
– Barriers, locks, critical sections

› Work partitioning
– Loops, sections, single work, tasks…

› Execution devices
– Target

2

OpenMP synchronization

› OpenMP provides the following synchronization constructs:
– barrier

– flush

– master

– critical

– atomic

– taskwait

– taskgroup

– ordered

– …and OpenMP locks

3

Exercise

› Spawn a team of (many) parallel Threads
– Each incrementing a shared variable

– What do you see?

4

Let's

code!

OpenMP locks

› Defined at the OpenMP runtime level
– Symbols available in code including omp.h header

› General-purpose locks
1. Must be initialized

2. Can be set

3. Can be unset

› Each lock can be in one of the following states
1. Uninitialized

2. Unlocked

3. Locked

5

Locking primitives

› The omp_set_lock has blocking semantic

6

/* Initialize an OpenMP lock */

void omp_init_lock(omp_lock_t *lock);

/* Ensure that an OpenMP lock is uninitialized */

void omp_destroy_lock(omp_lock_t *lock);

/* Set an OpenMP lock. The calling thread behaves

as if it was suspended until the lock can be set */

void omp_set_lock(omp_lock_t *lock);

/* Unset the OpenMP lock */

void omp_unset_lock(omp_lock_t *lock);

omp.h

OMP locks: example

› Locks must be
– Initialized

– Destroyed

› Locks can be
– set

– unset

– tested

› Very simple example

7

/*** Do this only once!! */

/* Declare lock var */

omp_lock_t lock;

/* Init the lock */

omp_init_lock(&lock);

/* If another thread set the lock,

I will wait */

omp_set_lock(&lock);

/* I can do my work being sure that no-

one else is here */

/* unset the lock so that other threads

can go */

omp_unset_lock(&lock);

/*** Do this only once!! */

/* Destroy lock */

omp_destroy_lock(&lock);

Exercise

› Spawn a team of (many) parallel Threads
– Each incrementing a shared variable

– What do you see?

› Protect the variable using OpenMP locks
– What do you see?

› Now, comment the call to omp_unset_lock
– What do you see?

8

Let's

code!

The omp_lock_t type

› Implementation-defined, it represents a lock type
– Different implementations, different optimizations

› C routines for OMP lock accept a pointer to an omp_lock_t type
– (at least)

9

/* (1) Our implementation @UniBo (few years ago) */

typedef unsigned long omp_lock_t;

/* (2) ROSE compiler */

typedef void * omp_lock_t;

/* (3) GCC-OpenMP (aka Libgomp) */

typedef struct {

unsigned char _x[@OMP_LOCK_SIZE@]

__attribute__((__aligned__(@OMP_LOCK_ALIGN@)));

} omp_lock_t;

omp.h

Non-blocking lock set

› Extremely useful in some cases. Instead of blocking
– we can do useful work

– we can increment a counter (to profile lock usage)

› Reproduce blocking set semantic using a loop
– while (!omp_test_lock(lock)) /* ... */;

10

/* Set an OpenMP lock but do not suspend the execution of the thread.

Returns TRUE if the lock was set */

int omp_test_lock(omp_lock_t *lock);

omp.h

Exercise

› Modify the "PI Montecarlo" exercise
– Replace the variable in the reduction clause with a shared variable

– Protect it using an OpenMP lock

11

Let's

code!

Let's do more

› Locks are extremely powerful
– And low-level

› We can use them to build complex semantics
– Mutexes

– Semaphores..

› But they are a bit "cumbersome" to use
– Need to initialize before, and release after

– We can definitely do more!

pragma-level synchronization constructs

12

The critical construct

› "Restricts the execution of the associated structured block to a single
thread at a time"
– The so-called Critical Section

› Binding set: all threads everywhere (also in other teams/parregs)

› Can associate it with a "hint"
– omp_lock_hint_t

– Also locks can
– We won't see this

13

#pragma omp critical [(name) [hint(hint-expression)]] new-line

structured-block

Where hint-expression is an integer constant expressioon that evaluates to a
valid lock hint

The critical section

› From this…

› …to this

14

/* Declare lock var */

omp_lock_t lock;

/* Init the lock */

omp_init_lock(&lock);

/* If another thread set the lock,

I will wait */

omp_set_lock(&lock);

/* I can do my work being sure that no-

one else is here */

/* unset the lock so that other threads

can go */

omp_unset_lock(&lock);

/* Destroy lock */

omp_destroy_lock(&lock);

/* If another thread is in, I must wait */

#pragma omp critical

{

/* _Critical Section_

I can do my work being sure

that no- one else is here */

}

/* Now, other threads can go */

Exercise

› Modify the "PI Montecarlo" exercise
– Using critical section instead of locks

15

Let's

code!

The risk of sequentialization

› Critical sections should be kept small as possible
– They force code portions sequentialization

– Harness performance

16

0

1

2499

T T

0

1

2499

T

0

1

2499

T

0

1

2499

0

1

2499

T T

0

1

2499

T

0

1

2499

T

0

1

2499

CRIT WAIT WAIT WAIT

CRIT

CRIT

CRIT

Even more flexible

› (Good) parallel programmers manage to keep critical sections
small
– Possibly, away from their code!

› Most of the operations in a critical section are always the
same!
– "Are you really sure you can't do this using reduction semantics?"

– Modify a shared variable

– Enqueue/dequeue in a list, stack..

› For single (C/C++) instruction we can definitely do better

17

The atomic construct

› The atomic construct ensures that a specific storage location is
accessed atomically
– We will see only its simplest form

– Applies to a single instruction, not to a structured block..

› Binding set: all threads everywhere (also in other teams/parregs)

› The seq_cst clause forces the atomically performed operation to
include an implicit flush operation without a list
– Enforces memory consistency

– Does not avoid data races!!

18

#pragma omp atomic [seq_cst] new-line

expression-stmt

Exercise

› Modify the "PI Montecarlo" exercise
– Implementing the critical section with the atomic construct

– (If possible)

19

Let's

code!

How to run the examples

› Download the Code/ folder from the course website

› Compile

› $ gcc –fopenmp code.c -o code

› Run (Unix/Linux)

$./code

› Run (Win/Cygwin)

$./code.exe

20

Let's

code!

References

› "Calcolo parallelo" website
– http://hipert.unimore.it/people/paolob/pub/PhD/index.html

› My contacts
– paolo.burgio@unimore.it

– http://hipert.mat.unimore.it/people/paolob/

› Useful links
– http://www.google.com

– http://www.openmp.org

– https://gcc.gnu.org/

› A "small blog"
– http://www.google.com

22

http://hipert.unimore.it/people/paolob/pub/PhD/index.html
mailto:paolo.burgio@unimore.it
http://www.google.com/
http://www.openmp.org/
https://gcc.gnu.org/
http://www.google.com/

