
Barriers
in OpenMP

Paolo Burgio
paolo.burgio@unimore.it

Outline

› Expressing parallelism
– Understanding parallel threads

› Memory Data management
– Data clauses

› Synchronization
– Barriers, locks, critical sections

› Work partitioning
– Loops, sections, single work, tasks…

› Execution devices
– Target

2

OpenMP synchronization

› OpenMP provides the following synchronization constructs:
– barrier

– flush

– master

– critical

– atomic

– taskwait

– taskgroup

– ordered

– ..and OpenMP locks

3

Creating a parreg

› Master-slave, fork-join execution model
– Master thread spawns a team of Slave threads

– They all perform computation in parallel

– At the end of the parallel region, implicit barrier

4

int main()

{

/* Sequential code */

#pragma omp parallel num_threads(4)

{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */

}

Creating a parreg

› Master-slave, fork-join execution model
– Master thread spawns a team of Slave threads

– They all perform computation in parallel

– At the end of the parallel region, implicit barrier

4

int main()

{

/* Sequential code */

#pragma omp parallel num_threads(4)

{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */

}

T

Creating a parreg

› Master-slave, fork-join execution model
– Master thread spawns a team of Slave threads

– They all perform computation in parallel

– At the end of the parallel region, implicit barrier

4

int main()

{

/* Sequential code */

#pragma omp parallel num_threads(4)

{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */

}

T T TT

Creating a parreg

› Master-slave, fork-join execution model
– Master thread spawns a team of Slave threads

– They all perform computation in parallel

– At the end of the parallel region, implicit barrier

4

int main()

{

/* Sequential code */

#pragma omp parallel num_threads(4)

{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */

}

T

OpenMP explicit barriers

› All threads in a team must wait for all the other threads before going on
– "Each barrier region must be encountered by all threads in a team or by none at all"

– "The sequence of barrier regions encountered must be the same for every thread in a team"

– Why?

› Binding set is the team of threads from the innermost enclosing parreg
– "It applies to"

› Also, it enforces a consistent view of the shared memory
– We'll see this..

5

#pragma omp barrier new-line

(a standalone directive)

Exercise

› Spawn a team of (many) parallel Threads
– Printing "Hello World"

– Put a #pragma omp barrier

– Reprint "Hello World" after

› What do you see?
– Now, remove the barrier construct

› Now, put the barrier inside an if
– E.g., if(omp_get_thread_num() == 0) { ... }

– What do you see?

– Error!!!!

6

Let's

code!

Effects on memory

› Besides synchronization, a barrier has the effect of making
threads' temporary view of the shared memory consistent
– You cannot trust any (potentially modified) shared vars before a barrier

– Of course, there are no problems with private vars

› ..what???

7

The OpenMP memory model

› Shared memory with relaxed consistency
– Threads have access to "a place to store and to retrieve variables, called the

memory"

– Threads can have a temporary view of the memory

› Caches, registers, scratchpads…

› Can still be accessed by other threads

8

Process

Shared

T
T

T

VAR

Temp

Priv.

VAR VAR

Temp

Priv.

Temp

Priv.

first/

private(a)

shared(a)

?????

??

A bit of architecture…

Caches in a nutshell

› A quick memory connected to the core processor
– ..and to the main memory

– Few KB of data

› (If any,) caches are a pure hardware mechanism
– Used to store a copy mostly accessed data

– To speedup execution even by 10-20 times

– Istruction caches/Data caches

› They perform their work automatically
– And transparently

– Poor or no control at all at application level

– Extremely dangerous in multi- and many-cores

10

Caches

11

A cache is a hardware or software component that stores data so future
requests for that data can be served faster; the data stored in a cache might
be the result of an earlier computation, or the duplicate of data stored
elsewhere.

eng.wikipedia.org

CPU
0

D$

Main memory, or L3 cache

Offchip memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T TT T T

I$ I$ I$ I$

Level-2 $

The catch(es)

› Caches are power hungry
– Some embedded architectures do not have D$

› They are not suitable for critical systems
– E.g., BOSCH removed I$s

› Hardware mechanism, poor control on them
– Flush command (typically, all cache)

– Color cache (assign to threads)

– Prefetch (move data before it's actually needed)

Coherency problem in multi/many-cores!!

12

An example: read stale data

13

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

b = a;

// ...

c = a;

a

An example: read stale data

13

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

11

b = a;

// ...

c = a;

a

An example: read stale data

13

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

11

5

b = a;

// ...

c = a;

a

An example: read stale data

13

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

11

5

b = a;

// ...

c = a;

a

An example: read stale data

14

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

b = a;

// ...

dcache_flush();

c = a;

a

An example: read stale data

14

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

11

b = a;

// ...

dcache_flush();

c = a;

a

An example: read stale data

14

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

11

5

b = a;

// ...

dcache_flush();

c = a;

a

An example: read stale data

14

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

5

b = a;

// ...

dcache_flush();

c = a;

a

An example: read stale data

14

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

5

b = a;

// ...

dcache_flush();

c = a;

5

a

An(other) example: $ writing policies

Write-through

15

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

11

b = a;

a

An(other) example: $ writing policies

Write-through

15

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

11

5

b = a;

5a

An(other) example: $ writing policies

Write-through

15

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

11

5

b = a;

5a

An(other) example: $ writing policies

Write-through

15

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

11

5

b = a;

5

5a

An(other) example: $ writing policies

Write-back

16

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

b = a;

a

An(other) example: $ writing policies

Write-back

16

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

5

b = a;

a

An(other) example: $ writing policies

Write-back

16

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

11 5

b = a;

a

An(other) example: $ writing policies

Write-back

16

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

11 5

b = a;

5a

An(other) example: $ writing policies

Write-back w/cache flush

17

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

dcache_flush();

11

b = a;

a

An(other) example: $ writing policies

Write-back w/cache flush

17

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

dcache_flush();

11

5

b = a;

a

An(other) example: $ writing policies

Write-back w/cache flush

17

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

dcache_flush();

11

b = a;

5a

An(other) example: $ writing policies

Write-back w/cache flush

17

CPU
0

D$

Main memory

CPU
1

D$

CPU
2

D$

CPU
3

D$

T
T

11

a = 5;

dcache_flush();

11

b = a;

5

5a

The flush directive

› Binding thread set is the encountering thread
– More "relaxed"

› "It executes the OpenMP flush operation"
– Makes its temporary view of the shared memory consistent with other threads

– "Calls to dcache_flush()"

› Enforces an order on the memory operations on the variables
specified in list

18

#pragma omp flush [(list)] new-line

Semantics: barrier vs flush

#pragma omp barrier

› Joins the threads of a team

› Applies to all threads of a team

› Forces consistency of threads' temporary view of the shared
memory

#pragma omp flush

› Applies to one thread

› Forces consistency of its temporary view of the shared memory

› Much lighter!

19

OpenMP software stack

› Multi-layer stack
– Engineered for portability

20

User code

Operating System

Hardware

OpenMP runtime

T

a = 5;

#pragma omp flush

void GOMP_flush() {

dcache_flush();

}

D$

void dcache_flush()

{

asm("mov r15, #1");

}

OpenMP software stack

› Multi-layer stack
– Engineered for portability

20

User code

Operating System

Hardware

OpenMP runtime

T

a = 5;

#pragma omp flush

void GOMP_flush() {

dcache_flush();

}

D$

void dcache_flush()

{

asm("mov r15, #1");

}

D$

How to run the examples

› Download the Code/ folder from the course website

› Compile

› $ gcc –fopenmp code.c -o code

› Run (Unix/Linux)

$./code

› Run (Win/Cygwin)

$./code.exe

21

Let's

code!

References

› "Calcolo parallelo" website
– http://hipert.unimore.it/people/paolob/pub/PhD/index.html

› My contacts
– paolo.burgio@unimore.it

– http://hipert.mat.unimore.it/people/paolob/

› Useful links
– http://www.google.com

– http://www.openmp.org

– https://gcc.gnu.org/

› A "small blog"
– http://www.google.com

22

http://hipert.unimore.it/people/paolob/pub/PhD/index.html
mailto:paolo.burgio@unimore.it
http://hipert.mat.unimore.it/people/paolob/
http://www.google.com/
http://www.openmp.org/
https://gcc.gnu.org/
http://www.google.com/

