Barriers
in OpenMP

Paolo Burgio
paolo.burgio@unimore.it

HIEeR,

Outline

v

Nﬂory Data management

= Data clauses

v

Synchronization
— Barriers, locks, critical sections

v

Work partitioning

— Loops, sections, single work, tasks...

Execution devices
— Target

v

OpenMP synchronization

> OpenMP provides the following synchronization constructs:
— barrier
— flush
— master
— critical
— atomic
— taskwait
— taskgroup
— ordered
— ..and OpenMP locks

Creating a parreg

> Master-slave, fork-join execution model
— Master thread spawns a team of Slave threads
— They all perform computation in parallel
— At the end of the parallel region, implicit barrier

int main ()

{
/* Sequential code */
#pragma omp parallel num threads (4)
{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */

4

Creating a parreg

> Master-slave, fork-join execution model
— Master thread spawns a team of Slave threads
— They all perform computation in parallel
— At the end of the parallel region, implicit barrier

int main ()

{
/* Sequential code */ %

#pragma omp parallel num threads (4)
{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */

4

Creating a parreg

> Master-slave, fork-join execution model
— Master thread spawns a team of Slave threads
— They all perform computation in parallel
— At the end of the parallel region, implicit barrier

int main ()

{

/* Sequential code */ i

#pragma omp parallel num threads (4)
{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */

4

Creating a parreg

> Master-slave, fork-join execution model
— Master thread spawns a team of Slave threads
— They all perform computation in parallel
— At the end of the parallel region, implicit barrier

int main ()

{

/* Sequential code */ i

#pragma omp parallel num threads (4)
{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */ %

4

OpenMP explicit barriers

fpragma omp barrier new-line

(a standalone directive)

> All threads in a team must wait for all the other threads before going on
"Each barrier region must be encountered by all threads in a team or by none at all"

— "The sequence of barrier regions encountered must be the same for every thread in a team"
- Why?

> Binding set is the team of threads from the innermost enclosing parreg
— "It applies to"

> Also, it enforces a consistent view of the shared memory
- We'll see this..

Let's

Exercise code!

> Spawn a team of (many) parallel Threads

— Printing "Hello World"
— Puta #pragma omp barrier
— Reprint "Hello World" after

> What do you see?

— Now, remove the barrier construct

> Now, put the barrier inside an i £
- EBE.g,1f (omp get thread num() == 0) { ... }
— What do you see?
— Error!lll

Effects on memory

> Besides synchronization, a barrier has the effect of making
threads' temporary view of the shared memory consistent

— You cannot trust any (potentially modified) shared vars before a barrier

— Of course, there are no problems with private vars

> ..what???

The OpenMP memory model

> Shared memory with relaxed consistency

— Threads have access to "a place to store and to retrieve variables, called the
memory"

— Threads can have a temporary view of the memory

> Caches, registers, scratchpads...
> Can still be accessed by other threads

Priv.

Temp

Shared

A bit of architecture...

Caches in a nutshell

> A quick memory connected to the core processor

— ..and to the main memory
— Few KB of data

> (If any,) caches are a pure hardware mechanism

— Used to store a copy mostly accessed data
— To speedup execution even by 10-20 times
— Istruction caches/Data caches

> They perform their work automatically
— And transparently
— Poor or no control at all at application level
— Extremely dangerous in multi- and many-cores

10

Caches

eng.wikipedia.org

v v v v

Level-2 $
Offchip memory !

!

Main memory, or L3 cache @
11

The catch(es)

> Caches are power hungry
— Some embedded architectures do not have DS

> They are not suitable for critical systems
— E.g., BOSCH removed ISs

> Hardware mechanism, poor control on them
— Flush command (typically, all cache)
— Color cache (assign to threads)
— Prefetch (move data before it's actually needed)

Coherency problem in multi/many-cores!!

12

An example: read stale data

b
CQQ

CPU CPU
2 3
A A
s R o I8

Main memory

13

An example: read stale data

b
CQQ

CPU CPU CPU
1 2 3
A A A
-

Main memory

13

An example: read stale data

b
CQQ

CPU CPU CPU
1 2 3
A A A
-

Main memory

13

An example: read stale data

b
CQQ

CPU CPU CPU
1 2 3
A A A
-

Main memory

13

An example: read stale data

c = ay

\

dcache flush(); i

-

A

Main memory

14

An example: read stale data

dcache flush();
c = a;
\ 7

Main memory

14

An example: read stale data

dcache flush();
c = a;
\ 7

Main memory

14

An example: read stale data

c = ay

\

dcache flush(); i

-

A

Main memory

14

An example: read stale data

dcache flush();
c = a;
\ 7

Main memory

14

An(other) example: $ writing policies

Write-through

h S
) - CPU CPU CPU
1 2 3
A A A A

05 gl D5 gl O

Main memory

15

An(other) example: $ writing policies

Write-through

h S
i CPU CPU CPU
1 2 3
A A A A
- |- |- -

I

a Main memory
15

An(other) example: $ writing policies

Write-through

h S
i CPU CPU CPU
1 2 3
A A A A
- |- |- -

I

a Main memory
15

An(other) example: $ writing policies

Write-through

h S
- CPU CPU CPU
1 2 3
A A A A
B - - -

I

a Main memory
15

An(other) example: $ writing policies

Write-back

&

A

CPU
3
A

Main memory

16

An(other) example: $ writing policies

Write-back

o

CPU
3
A

A A

Main memory

16

An(other) example: $ writing policies

Write-back

CPU
3
A

Main memory

16

An(other) example: $ writing policies

Write-back

I

a Main memory
16

An(other) example: $ writing policies

Write-back w/cache flush

a = 5;
dcache flush();
\

Main memory

17

An(other) example: $ writing policies

Write-back w/cache flush

a = 5;
dcache flush();
\

Main memory

17

An(other) example: $ writing policies

Write-back w/cache flush

a = 5;
dcache flush();
\

Main memory

17

An(other) example: $ writing policies

Write-back w/cache flush

a = 5;
dcache flush();
\

Main memory

17

The £1ush directive

fpragma omp flush [(list)] new-line

> Binding thread set is the encountering thread

— More "relaxed"

> "It executes the OpenMP flush operation”
— Makes its temporary view of the shared memory consistent with other threads
— "Callsto dcache flush()"

> Enforces an order on the memory operations on the variables
specifiedin 1ist

18

Semantics: barrier vs £lush

fpragma omp barrier
> Joins the threads of a team
> Applies to all threads of a team

> Forces consistency of threads' temporary view of the shared
memory

#pragma omp flush
> Applies to one thread
> Forces consistency of its temporary view of the shared memory

> Much lighter!

19

OpenMP software stack

> Multi-layer stack
— Engineered for portability

a = 5;

#pragma omp flush

/
void GOMP flush() {
OpenMP runtime deache_flush();
}
|

void dcache flush()
{

asm("mov rl5, #1");

}

OpenMP software stack

> Multi-layer stack
— Engineered for portability

a = 5;

#pragma omp flush

/
void GOMP flush() {
OpenMP runtime deache_flush();
}
|

void dcache flush()
{

asm("mov rl5, #1");

}

How to run the examples . |

> Download the Code/ folder from the course website

> Compile

» $ gcc —fopenmp code.c -o code

> Run (Unix/Linux)
S ./code
> Run (Win/Cygwin)

S ./code.exe

21

References a £2

> "Calcolo parallelo” website
— http://hipert.unimore.it/people/paolob/pub/PhD/index.html

> My contacts

— paolo.burgio@unimore.it

— http://hipert.mat.unimore.it/people/paolob/

> Useful links

— http://www.google.com

— http://www.openmp.org

— https://gcc.genu.org/

> A "small blog"

— http://www.google.com

l

http://hipert.unimore.it/people/paolob/pub/PhD/index.html
mailto:paolo.burgio@unimore.it
http://hipert.mat.unimore.it/people/paolob/
http://www.google.com/
http://www.openmp.org/
https://gcc.gnu.org/
http://www.google.com/

