
Data Sharing
in OpenMP

Paolo Burgio
paolo.burgio@unimore.it

Outline

› Expressing parallelism
– Understanding parallel threads

› Memory Data management
– Data clauses

› Synchronization
– Barriers, locks, critical sections

› Work partitioning
– Loops, sections, single work, tasks…

› Execution devices
– Target

2

Exercise

› Declare and initialize a variable outside the parallel region

› Spawn a team of parallel Threads
– Each printing the value of the variable

› What do you see?

3

Let's

code!

shared variables

› The variable is shared among the parallel threads
– If one thread modifies it, then all threads see the new value

› Let's see this!
– Let (only) Thread 0 modify the value of the variable

› What's happening?
– (probably|might be that) Thread 0 modifies the value after the other threads

read it

– The more thread you have, the more probably you see this…

4

Let's

code!

As opposite to… private variables

› Threads might wants to own a private copy of a datum
– Other threads cannot modify it

› Two ways
– They can declare it inside the parallel region

– Or, they can use data sharing attribute clauses

› private | firstprivate
– Create a storage for the specified datum (variable or param) in each threads'

stack

5

Data sharing clauses in parregs

6

#pragma omp parallel [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([parallel :] scalar-expression)

num_threads (integer-expression)

default(shared | none)

firstprivate (list)

private (list)

shared (list)

copyin (list)

reduction(reduction-identifier : list)

proc_bind(master | close | spread)

Initial value for (first)private data

› How is the private data initialized?
– firstprivate initializes it with the value of the enclosing context

– private does not initialize it / initializes it with 0

7

Exercise

› Declare and initialize a variable outside the parallel region

› Spawn a team of parallel Threads
– Mark the variable as private using data sharing clause

– Each printing the value of the variable

– Let (only) Thread 0 modify the value of the variable

› What do you see?
– Now, mark the variable as firstprivate

8

Let's

code!

shared data-sharing clause

› All variables specified are shared among all threads

› Programmer is in charge of consistency!
– OpenMP philosophy..

9

Multiple variables in a single clause

› Do not need to repeat the clause always
– If you don't want..

› Separated by commas

10

int a = 11, b = 1, c;

#pragma omp parallel num_threads(16) \

private(a, b)

private(c)

{

…

private vs. parreg-local variables

› Find the difference between…

› "A new storage is created as we enter the region, and
destroyed after"

› On the right (private)
– There is also a storage that exists before and after parreg

11

int a = ...;

#pragma omp parallel private(a) \

num_threads(4)

{

a = ...

}

#pragma omp parallel num_threads(4)

{

int a = ...

}

Variables and memory (1)

› "The traditional way"

12

#pragma omp parallel num_threads(4)

{

int a = ...

}

T

T TT

Process memory

Variables and memory (1)

› "The traditional way"

12

#pragma omp parallel num_threads(4)

{

int a = ...

}

T

T TT

Process memory

a
T0 Stack

a
T2 Stack

a
T1 Stack

a
T3 Stack

Variables and memory (1)

› "The traditional way"

12

#pragma omp parallel num_threads(4)

{

int a = ...

}

T

T TT

Process memory

Variables and memory (2)

› Create a new storage for the variables, local to threads

13

int a = 11;

#pragma omp parallel private(a) \

num_threads(4)

{

a = ...

}

T

T TT

Process memory

Variables and memory (2)

› Create a new storage for the variables, local to threads

13

int a = 11;

#pragma omp parallel private(a) \

num_threads(4)

{

a = ...

}

T

T TT

a

T0 Stack

11

Process memory

Variables and memory (2)

› Create a new storage for the variables, local to threads

13

int a = 11;

#pragma omp parallel private(a) \

num_threads(4)

{

a = ...

}

T

T TT

a

T0 Stack

11

a

a
T2 Stack

a
T1 Stack

a
T3 Stack

Process memory

Variables and memory (2)

› Create a new storage for the variables, local to threads

13

int a = 11;

#pragma omp parallel private(a) \

num_threads(4)

{

a = ...

}

T

T TT

a

T0 Stack

11

a

a
T2 Stack

a
T1 Stack

a
T3 Stack

?

?

?

?

Process memory

Variables and memory (2)

› Create a new storage for the variables, local to threads

13

int a = 11;

#pragma omp parallel private(a) \

num_threads(4)

{

a = ...

}

T

T TT

a

T0 Stack

11

Process memory

Variables and memory (3)

› Create a new storage for the variables, local to threads, and initialize

14

int a = 11;

#pragma omp parallel firstprivate(a) \

num_threads(4)

{

a = ...

}

T

T TT

Process memory

Variables and memory (3)

› Create a new storage for the variables, local to threads, and initialize

14

int a = 11;

#pragma omp parallel firstprivate(a) \

num_threads(4)

{

a = ...

}

T

T TT

a

11

Process memory

Variables and memory (3)

› Create a new storage for the variables, local to threads, and initialize

14

int a = 11;

#pragma omp parallel firstprivate(a) \

num_threads(4)

{

a = ...

}

T

T TT

a

11

a
T0 Stack

a
T2 Stack

a
T1 Stack

a
T3 Stack

Process memory

Variables and memory (3)

› Create a new storage for the variables, local to threads, and initialize

14

int a = 11;

#pragma omp parallel firstprivate(a) \

num_threads(4)

{

a = ...

}

T

T TT

a

11

a
T0 Stack

a
T2 Stack

a
T1 Stack

a
T3 Stack

11

11

11

11

Process memory

Variables and memory (3)

› Create a new storage for the variables, local to threads, and initialize

14

int a = 11;

#pragma omp parallel firstprivate(a) \

num_threads(4)

{

a = ...

}

T

T TT

a

11

Process memory

Variables and memory (4)

› Every slave Thread refers to master's storage

15

int a = 11;

#pragma omp parallel shared(a) \

num_threads(4)

{

a = ...

}

T

T TT

Process memory

Variables and memory (4)

› Every slave Thread refers to master's storage

15

int a = 11;

#pragma omp parallel shared(a) \

num_threads(4)

{

a = ...

}

T

T TT

a
T0 Stack

11

Process memory

Variables and memory (4)

› Every slave Thread refers to master's storage

15

int a = 11;

#pragma omp parallel shared(a) \

num_threads(4)

{

a = ...

}

T

T TT

a
T0 Stack

11

Process memory

Variables and memory (4)

› Every slave Thread refers to master's storage

15

int a = 11;

#pragma omp parallel shared(a) \

num_threads(4)

{

a = ...

}

T

T TT

a
T0 Stack

11

Process memory

reduction clause in parregs

16

#pragma omp parallel [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([parallel :] scalar-expression)

num_threads (integer-expression)

default(shared | none)

firstprivate (list)

private (list)

shared (list)

copyin (list)

reduction(reduction-identifier : list)

proc_bind(master | close | spread)

Reduction

› In a nutshell
– For each variable specified, create a private storage

– At the end of the region, update master thread's value according to
reduction-identifier

– The variable must be qualified for that operation

17

The reduction clause can be used to perform some forms of recurrence calculations
(involving mathematically associative and commutative operators) in parallel. For parallel
[…], a private copy of each list item is created, one for each implicit task, as if the private
clause had been used. […] The private copy is then initialized as specified above. At the
end of the region for which the reduction clause was specified, the original list item is
updated by combining its original value with the final value of each of the private copies,
using the combiner of the specified reduction-identifier.

OpenMP specifications

Exercise

› Declare and initialize a variable outside the parallel region
– int a = 11

› Spawn a team of parallel Threads
– Mark the variable as reduction(+:a)

– Increment variable a

– Print the value of the variable before, inside, and after the parreg

› What do you see?
– (at home) repeat with other reduction-identifiers

18

Let's

code!

Reduction identifiers

› Mathematical/logical identifiers
– Each has a default initializer, and a combiner

– Minus (-) is more or less the same as plus (+)

19

+ - * & | ˆ && || max min

OpenMP
specifications

Data sharing clauses in parregs

20

#pragma omp parallel [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([parallel :] scalar-expression)

num_threads (integer-expression)

default(shared | none)

firstprivate (list)

private (list)

shared (list)

copyin (list)

reduction(reduction-identifier : list)

proc_bind(master | close | spread)

default data sharing clause

› Can be
– shared: all variables referenced in the construct that are not present in a

data sharing clause are shared

– none: each variable that is referenced in the construct, and that does not
have a predetermined data-sharing attribute, must have its data-sharing
attribute explicitly determined using a data-sharing clause

› (Yes, we can have predetermined attributes)
– We won't see this

21

The default clause explicitly determines the data-sharing attributes of

variables that are referenced in a parallel, teams, or task generating construct
and would otherwise be implicitly determined (see Section 2.15.1.1 on page
179).

OpenMP specifications

Exercise

› Declare and initialize a variable outside the parallel region

› Spawn a team of parallel Threads
– Use the default(none)using data sharing clause

– Do not use any other data sharing clause

– Each thread prints the value of the variable

› What do you see?

22

Let's

code!

Watch out!

› We haven't seen everything..
– Rules determining default sharing attributes are complex

– For instance, automatic variables within a parreg are implicitly private

– static variables within a parallel are implicitly shared!!

› Stay on the safe side:
– Use the default clause for variables you care about!!

– Use shared clauses

– If you can, declare variables inside parreg, instead of marking them as private

› …informatics is the art science of managing data

23

How to run the examples

› Download the Code/ folder from the course website

› Compile

› $ gcc –fopenmp code.c -o code

› Run (Unix/Linux)

$./code

› Run (Win/Cygwin)

$./code.exe

24

Let's

code!

References

› "Calcolo parallelo" website
– http://hipert.unimore.it/people/paolob/pub/PhD/index.html

› My contacts
– paolo.burgio@unimore.it

– http://hipert.mat.unimore.it/people/paolob/

› Useful links
– http://www.google.com

– http://www.openmp.org

– https://gcc.gnu.org/

› A "small blog"
– http://www.google.com

25

http://hipert.unimore.it/people/paolob/pub/PhD/index.html
mailto:paolo.burgio@unimore.it
http://hipert.mat.unimore.it/people/paolob/
http://www.google.com/
http://www.openmp.org/
https://gcc.gnu.org/
http://www.google.com/

