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Expressing parallelism
— Understanding parallel threads
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ory Data management
Data clauses
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Synchronization
— Barriers, locks, critical sections
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Work partitioning

— Loops, sections, single work, tasks...

Execution devices
— Target
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Thread-centric exec. models

> Programs written in C are implicitly sequential

— One thread traverses all of the instructions
— Any form of parallelism must be explicitly/manually coded
— Start sequential..then create a team of threads

> E.g., with Pthreads

— Expose to the programmer "0OS-like" threads
— Units of scheduling

> Also OpenMP provides a way to do that

— OpenMP <= 2.5 implements a thread-centric execution model

— Specify the so-called parallel regions




pragma omp parallel construct

#pragma omp parallel [clause [[,]clause]...] new-line
structured-block

Where clauses can be:

if ([parallel :] scalar-expression)
num_ threads (integer-expression)
default (shared | none)

firstprivate (list)

private (1ist)

shared (list)

copyin (list)

reduction (reduction-identifier : 1list)
proc bind(master | close | spread)




Creating a parreg

> Master-slave, fork-join execution model
thread spawns a team of Slave threads
— They all perform computation in parallel
— At the end of the parallel region, implicit barrier

int main ()

{
/* Sequential code */ %

#pragma omp parallel num_threads (4)
{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */
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Let's

Exercise code!

> Spawn a team of parallel (OMP)Threads
— Each printing "Hello Parallel World"
— No matter how many threads

> Don't forget the —fopenmp switch

— Compiler-dependant!

Compiler Compiler Options




Thread control

> OpenMP provides ways to
— Retrieve thread ID
— Retrieve number of threads
— Set the number of threads
— Specify threads-to-cores affinity (we won't see this)




Get thread ID
/ * IIIIHHEIEIIIII

* The omp get thread num routine returns

* the thread number, within the current team,
* of the calling thread.

*/

int omp get thread num(void);

> Function call

— Returns an integer
— Can be used everywhere where inside your code
> Also in sequential parts

> Don't forgetto #include <omp.h>!l

> Master thread (typically) has ID #0 Q};




Let's

Exercise code!

> Spawn a team of parallel (OMP)Threads
— Each printing "Hello Parallel World. | am thread #<tid>"
— Also, print "Hello Sequential World. | am thread #<tid>" before and after parreg
— What do you see?




Get the number of threads

.

* The omp get num threads routine returns
* the number of threads in the current team.
il

int omp get num threads (void);

> Function call
— Returns an integer
— Can be used everywhere where inside your code
> Also in sequential parts
— Don't forget to #include <omp.h>!!

> BTW

— ..thread ID from omp get thread num is always < this value..
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Let's

Exercise code!

> Spawn a team of parallel (OMP)Threads
— Each printing "Hello Parallel World. | am thread #<tid> out of <num>"

— Also, print "Hello Sequential World. | am thread #<tid> out of <num>" before
and after parreg

— What do you see?




Set the number of threads

> "This, we already saw ©"
— NO(t completely)!

> In OpenMP, several ways to do this
— Implementation-specific default

> In order of priority..
1. OpenMP num threads clause
2. Function APIs (explicit function call)
3. Environmental vars (at the OS level)

12




Set the number of threads (3)
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Set the number of threads (2)
/*

The omp set num threads routine affects the number of threads
to be used for subsequent parallel regions that do not specify
a num threads clause, by setting the value of the first
element of the nthreads-var ICV of the current task.

* X o

>(.

*/

void omp set num threads (int num threads);

> Function call

— Accepts an integer
— Can be used everywhere where inside your code
> Also in sequential parts

> Don't forgetto #include <omp.h>!!

> Overrides value from ovMP NUM THREADS
— Affects all of the subsequent parallel regions
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Set the number of threads (1)

#pragma omp parallel [clause [[,]clause]...] new-line
structured-block

Where clauses can be:

if([parallel :] scalar-expression)
num threads (integer-expression)
default (shared | none)

firstprivate (1ist)

private (list)

shared (list)

copyin (list)

reduction (reduction-identifier : list)
proc_bind(master | close | spread)




Let's

Exercise code!

> Spawn a team of parallel (OMP)Threads
— Each printing "Hello Parallel World. | am thread #<tid> out of <num>"

— Also, print "Hello Sequential World. | am thread #<tid> out of <num>" before
and after parreg

— Play with
> OMP_NUM THREADS
> omp set num threads

> num_ threads

> Do it at home
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The if clause

#pragma omp parallel [clause [[,]clause]...] new-line
Structured-block

Where clauses can be:

if ([parallel :] scalar-expression)
num threads (integer-expression)
default (shared | none)
firstprivate (l1ist)

private (list)

shared (list)

copyin (list)

reduction (reduction-identifier : list)
proc bind(master | close | spread)

> If scalar—-expressionis false, then spawn a single-thread
region

> We will see it also in other constructs...

— "Can be used in combined constructs, in this case programmer must specify which
one it refers to (in this case, with the parallel specifier)"
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Algorithm that determines #threads

> OpenMP Specifications
— Section 2.1
— http://www.openmp.org

Algorithm 2.1

let ThreadsBusy be the number of OpenMP threads currently executing in this
contention group;

let AcriveParRegions be the number of enclosing active parallel regions;
if an if clause exists

then let JfClauseValue be the value of the 1 £ clause expression;

else let [fClauseValue = irue;

if & num_threads clause exists

then let ThreadsRequesied be the value of the num threads clause expression;
else let ThreadsRequested = value of the first element of nihreads-var;
let ThreadsAvailable = (thread-limit-var - ThreadsBusy + 1);

if (IfClauseValue = false)

then number of threads = 1;

else if (AciiveParRegions »>= 1) and (pest-var = false)

then number of threads = 1;

else if (AciiveParRegions = max-active-levels-var)

then number of threads = 1;

else if (dyn-var = rue) and (ThreadsRequested <= ThreadsAvailable)
then number of threads = [ 1 : ThreadsRequested |,

else if (dyn-var = rrue) and (ThreadsRequested > ThreadsAvailable)
then number of threads = [ 1 : ThreadsAvailable |;

else if (dyn-var = false) and (ThreadsRequested <= ThreadsAvailable)
then number of threads = ThreadsReguested;,

e s> ThreadsAvailable)

then behavior is implementation defined;
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http://www.openmp.org/

Even more control...

> OpenMP provides fine-grain tuning of all the main "control
knobs"

— Dynamic thread number adjustment
— Nesting level
— Threads stack size

> More and more with every new version of specifications
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Nested parallel regions

> One can create a parallel region within a parallel region

— A new team of thread is created

> Enabled-disabled via environmental var, or library call

> Easy to lose control..

— Too many threads!
— Their number explodes
— Be ready to debug..
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Dynamic # threads adjustment

> The OpenMP implementation might decide to dynamically
adjust the number of thread within a parreg
— Aka the team size
— Under heavy load might be reduced

> Also this can be disabled
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Threads stack size

> Can specify low-level details such as the stack size

— Why only via environmental var?

Bash Shell




Process (shared) memory space

> Per-thread stack

— Still, accessible
— autovars

— Stack overflow!!

Per-thread
> Common heap stack size

- malloc/new

> BSS, text



Under the hood

> You have control on # threads
— Partly

> You have parial control on where the threads are scheduled
— Affinity

> You have no control on the actual scheduling!

— Demanded to OS + runtime

> ..."0S and runtime"?
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OpenMP software stack

Multi-layer stack, engineered for portability

> Application code
— Compliant to OMP standard

> Runtime (e.g., GCC-OpenMP)

— Provides services for parallelism

GOMP_ parallel (..)

— Compiler replaces pragma with
runtime-specific function calls

OpenMP runtime

. pthread create (..) PUIFEGES
> OS (e.g., Linux)

_ Provides basic services Thread scheduling (algorithm)
— Threading, memory mgmt, synch

— Can be standardized (e.g., PThreads)
CPU CPU CPU CPU

0 1 2 3
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How to run the examples . |

> Download the Code/ folder from the course website

> Compile

» $ gcc —fopenmp code.c -o code

> Run (Unix/Linux)
S ./code
> Run (Win/Cygwin)

S ./code.exe
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References n £

> "Calcolo parallelo” website
— http://hipert.unimore.it/people/paolob/pub/PhD/index.html

> My contacts

— paolo.burgio@unimore.it

— http://hipert.mat.unimore.it/people/paolob/

> Useful links

— http://www.google.com

— http://www.openmp.org

— https://gcc.genu.org/

> A "small blog"

— http://www.google.com
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