OpenMP threading:
parallel regions

Paolo Burgio
paolo.burgio@unimore.it

| HigeRT

Outline

v

Expressing parallelism
— Understanding parallel threads

M

v

ory Data management
Data clauses

v

Synchronization
— Barriers, locks, critical sections

v

Work partitioning

— Loops, sections, single work, tasks...

Execution devices
— Target

v

Thread-centric exec. models

> Programs written in C are implicitly sequential

— One thread traverses all of the instructions
— Any form of parallelism must be explicitly/manually coded
— Start sequential..then create a team of threads

> E.g., with Pthreads

— Expose to the programmer "0OS-like" threads
— Units of scheduling

> Also OpenMP provides a way to do that

— OpenMP <= 2.5 implements a thread-centric execution model

— Specify the so-called parallel regions

pragma omp parallel construct

#pragma omp parallel [clause [[,]clause]...] new-line
structured-block

Where clauses can be:

if ([parallel :] scalar-expression)
num_ threads (integer-expression)
default (shared | none)

firstprivate (list)

private (1ist)

shared (list)

copyin (list)

reduction (reduction-identifier : 1list)
proc bind(master | close | spread)

Creating a parreg

> Master-slave, fork-join execution model
thread spawns a team of Slave threads
— They all perform computation in parallel
— At the end of the parallel region, implicit barrier

int main ()

{
/* Sequential code */ %

#pragma omp parallel num_threads (4)
{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */

4

Creating a parreg

> Master-slave, fork-join execution model
thread spawns a team of Slave threads
— They all perform computation in parallel
— At the end of the parallel region, implicit barrier

int main ()

{
/* Sequential code */ i

#pragma omp parallel num_threads (4)
{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */

4

Creating a parreg

> Master-slave, fork-join execution model
thread spawns a team of Slave threads
— They all perform computation in parallel
— At the end of the parallel region, implicit barrier

int main ()

{
/* Sequential code */ i
#pragma omp parallel num_threads (4)
{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */ %

4

Let's

Exercise code!

> Spawn a team of parallel (OMP)Threads
— Each printing "Hello Parallel World"
— No matter how many threads

> Don't forget the —fopenmp switch

— Compiler-dependant!

Compiler Compiler Options

Thread control

> OpenMP provides ways to
— Retrieve thread ID
— Retrieve number of threads
— Set the number of threads
— Specify threads-to-cores affinity (we won't see this)

Get thread ID
/ * IIIIHHEIEIIIII

* The omp get thread num routine returns

* the thread number, within the current team,
* of the calling thread.

*/

int omp get thread num(void);

> Function call

— Returns an integer
— Can be used everywhere where inside your code
> Also in sequential parts

> Don't forgetto #include <omp.h>!l

> Master thread (typically) has ID #0 Q};

Let's

Exercise code!

> Spawn a team of parallel (OMP)Threads
— Each printing "Hello Parallel World. | am thread #<tid>"
— Also, print "Hello Sequential World. | am thread #<tid>" before and after parreg
— What do you see?

Get the number of threads

.

* The omp get num threads routine returns
* the number of threads in the current team.
il

int omp get num threads (void);

> Function call
— Returns an integer
— Can be used everywhere where inside your code
> Also in sequential parts
— Don't forget to #include <omp.h>!!

> BTW

— ..thread ID from omp get thread num is always < this value..

10

Let's

Exercise code!

> Spawn a team of parallel (OMP)Threads
— Each printing "Hello Parallel World. | am thread #<tid> out of <num>"

— Also, print "Hello Sequential World. | am thread #<tid> out of <num>" before
and after parreg

— What do you see?

Set the number of threads

> "This, we already saw ©"
— NO(t completely)!

> In OpenMP, several ways to do this
— Implementation-specific default

> In order of priority..
1. OpenMP num threads clause
2. Function APIs (explicit function call)
3. Environmental vars (at the OS level)

12

Set the number of threads (3)

13

Set the number of threads (2)
/*

The omp set num threads routine affects the number of threads
to be used for subsequent parallel regions that do not specify
a num threads clause, by setting the value of the first
element of the nthreads-var ICV of the current task.

* X o

>(.

*/

void omp set num threads (int num threads);

> Function call

— Accepts an integer
— Can be used everywhere where inside your code
> Also in sequential parts

> Don't forgetto #include <omp.h>!!

> Overrides value from ovMP NUM THREADS
— Affects all of the subsequent parallel regions

14

Set the number of threads (1)

#pragma omp parallel [clause [[,]clause]...] new-line
structured-block

Where clauses can be:

if([parallel :] scalar-expression)
num threads (integer-expression)
default (shared | none)

firstprivate (1ist)

private (list)

shared (list)

copyin (list)

reduction (reduction-identifier : list)
proc_bind(master | close | spread)

Let's

Exercise code!

> Spawn a team of parallel (OMP)Threads
— Each printing "Hello Parallel World. | am thread #<tid> out of <num>"

— Also, print "Hello Sequential World. | am thread #<tid> out of <num>" before
and after parreg

— Play with
> OMP_NUM THREADS
> omp set num threads

> num_ threads

> Do it at home

16

The if clause

#pragma omp parallel [clause [[,]clause]...] new-line
Structured-block

Where clauses can be:

if ([parallel :] scalar-expression)
num threads (integer-expression)
default (shared | none)
firstprivate (l1ist)

private (list)

shared (list)

copyin (list)

reduction (reduction-identifier : list)
proc bind(master | close | spread)

> If scalar—-expressionis false, then spawn a single-thread
region

> We will see it also in other constructs...

— "Can be used in combined constructs, in this case programmer must specify which
one it refers to (in this case, with the parallel specifier)"

17

Algorithm that determines #threads

> OpenMP Specifications
— Section 2.1
— http://www.openmp.org

Algorithm 2.1

let ThreadsBusy be the number of OpenMP threads currently executing in this
contention group;

let AcriveParRegions be the number of enclosing active parallel regions;
if an if clause exists

then let JfClauseValue be the value of the 1 £ clause expression;

else let [fClauseValue = irue;

if & num_threads clause exists

then let ThreadsRequesied be the value of the num threads clause expression;
else let ThreadsRequested = value of the first element of nihreads-var;
let ThreadsAvailable = (thread-limit-var - ThreadsBusy + 1);

if (IfClauseValue = false)

then number of threads = 1;

else if (AciiveParRegions »>= 1) and (pest-var = false)

then number of threads = 1;

else if (AciiveParRegions = max-active-levels-var)

then number of threads = 1;

else if (dyn-var = rue) and (ThreadsRequested <= ThreadsAvailable)
then number of threads = [1 : ThreadsRequested |,

else if (dyn-var = rrue) and (ThreadsRequested > ThreadsAvailable)
then number of threads = [1 : ThreadsAvailable |;

else if (dyn-var = false) and (ThreadsRequested <= ThreadsAvailable)
then number of threads = ThreadsReguested;,

e s> ThreadsAvailable)

then behavior is implementation defined;

18

http://www.openmp.org/

Even more control...

> OpenMP provides fine-grain tuning of all the main "control
knobs"

— Dynamic thread number adjustment
— Nesting level
— Threads stack size

> More and more with every new version of specifications

19

Nested parallel regions

> One can create a parallel region within a parallel region

— A new team of thread is created

> Enabled-disabled via environmental var, or library call

> Easy to lose control..

— Too many threads!
— Their number explodes
— Be ready to debug..

20

Dynamic # threads adjustment

> The OpenMP implementation might decide to dynamically
adjust the number of thread within a parreg
— Aka the team size
— Under heavy load might be reduced

> Also this can be disabled

21

Threads stack size

> Can specify low-level details such as the stack size

— Why only via environmental var?

Bash Shell

Process (shared) memory space

> Per-thread stack

— Still, accessible
— autovars

— Stack overflow!!

Per-thread
> Common heap stack size

- malloc/new

> BSS, text

Under the hood

> You have control on # threads
— Partly

> You have parial control on where the threads are scheduled
— Affinity

> You have no control on the actual scheduling!

— Demanded to OS + runtime

> ..."0S and runtime"?

24

OpenMP software stack

Multi-layer stack, engineered for portability

> Application code
— Compliant to OMP standard

> Runtime (e.g., GCC-OpenMP)

— Provides services for parallelism

GOMP_ parallel (..)

— Compiler replaces pragma with
runtime-specific function calls

OpenMP runtime

. pthread create (..) PUIFEGES
> OS (e.g., Linux)

_ Provides basic services Thread scheduling (algorithm)
— Threading, memory mgmt, synch

— Can be standardized (e.g., PThreads)
CPU CPU CPU CPU

0 1 2 3

25

[l

How to run the examples . |

> Download the Code/ folder from the course website

> Compile

» $ gcc —fopenmp code.c -o code

> Run (Unix/Linux)
S ./code
> Run (Win/Cygwin)

S ./code.exe

26

References n £

> "Calcolo parallelo” website
— http://hipert.unimore.it/people/paolob/pub/PhD/index.html

> My contacts

— paolo.burgio@unimore.it

— http://hipert.mat.unimore.it/people/paolob/

> Useful links

— http://www.google.com

— http://www.openmp.org

— https://gcc.genu.org/

> A "small blog"

— http://www.google.com
27

http://hipert.unimore.it/people/paolob/pub/PhD/index.html
mailto:paolo.burgio@unimore.it
http://hipert.mat.unimore.it/people/paolob/
http://www.google.com/
http://www.openmp.org/
https://gcc.gnu.org/

