
OpenMP threading:
parallel regions

Paolo Burgio
paolo.burgio@unimore.it

Outline

› Expressing parallelism
– Understanding parallel threads

› Memory Data management
– Data clauses

› Synchronization
– Barriers, locks, critical sections

› Work partitioning
– Loops, sections, single work, tasks…

› Execution devices
– Target

2

Thread-centric exec. models

› Programs written in C are implicitly sequential
– One thread traverses all of the instructions

– Any form of parallelism must be explicitly/manually coded

– Start sequential..then create a team of threads

› E.g., with Pthreads
– Expose to the programmer "OS-like" threads

– Units of scheduling

› Also OpenMP provides a way to do that
– OpenMP <= 2.5 implements a thread-centric execution model

– Specify the so-called parallel regions

3

Underlined: Keywords

pragma omp parallel construct

4

#pragma omp parallel [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([parallel :] scalar-expression)

num_threads (integer-expression)

default(shared | none)

firstprivate (list)

private (list)

shared (list)

copyin (list)

reduction(reduction-identifier : list)

proc_bind(master | close | spread)

Creating a parreg

› Master-slave, fork-join execution model
– Master thread spawns a team of Slave threads

– They all perform computation in parallel

– At the end of the parallel region, implicit barrier

5

int main()

{

/* Sequential code */

#pragma omp parallel num_threads(4)

{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */

}

T

Creating a parreg

› Master-slave, fork-join execution model
– Master thread spawns a team of Slave threads

– They all perform computation in parallel

– At the end of the parallel region, implicit barrier

5

int main()

{

/* Sequential code */

#pragma omp parallel num_threads(4)

{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */

}

T T TT

Creating a parreg

› Master-slave, fork-join execution model
– Master thread spawns a team of Slave threads

– They all perform computation in parallel

– At the end of the parallel region, implicit barrier

5

int main()

{

/* Sequential code */

#pragma omp parallel num_threads(4)

{

/* Parallel code */

} // Parreg end: (implicit) barrier

/* (More) sequential code */

}

T

Exercise

› Spawn a team of parallel (OMP)Threads
– Each printing "Hello Parallel World"

– No matter how many threads

› Don't forget the –fopenmp switch
– Compiler-dependant!

6

Compiler Compiler Options

GNU (gcc, g++, gfortran) -fopenmp

Intel (icc ifort) -openmp

Portland Group (pgcc,pgCC,pgf77,pgf90) -mp

Let's

code!

Thread control

› OpenMP provides ways to
– Retrieve thread ID

– Retrieve number of threads

– Set the number of threads

– Specify threads-to-cores affinity (we won't see this)

7

Get thread ID

› Function call
– Returns an integer

– Can be used everywhere where inside your code

› Also in sequential parts

› Don't forget to #include <omp.h>!!

› Master thread (typically) has ID #0

8

/*

* The omp_get_thread_num routine returns

* the thread number, within the current team,

* of the calling thread.

*/

int omp_get_thread_num(void);

omp.h

T

Exercise

› Spawn a team of parallel (OMP)Threads
– Each printing "Hello Parallel World. I am thread #<tid>"

– Also, print "Hello Sequential World. I am thread #<tid>" before and after parreg

– What do you see?

9

Let's

code!

Get the number of threads

› Function call
– Returns an integer

– Can be used everywhere where inside your code

› Also in sequential parts

– Don't forget to #include <omp.h>!!

› BTW
– …thread ID from omp_get_thread_num is always < this value..

10

/*

* The omp_get_num_threads routine returns

* the number of threads in the current team.

*/

int omp_get_num_threads(void);

omp.h

Exercise

› Spawn a team of parallel (OMP)Threads
– Each printing "Hello Parallel World. I am thread #<tid> out of <num>"

– Also, print "Hello Sequential World. I am thread #<tid> out of <num>" before
and after parreg

– What do you see?

11

Let's

code!

Set the number of threads

› "This, we already saw ☺"
– NO(t completely)!

› In OpenMP, several ways to do this
– Implementation-specific default

› In order of priority..
1. OpenMP num_threads clause

2. Function APIs (explicit function call)

3. Environmental vars (at the OS level)

12

Set the number of threads (3)

› Unix environmental variable
– (Might use setenv, set or distro-specific commands)

13

The OMP_NUM_THREADS environment variable sets

the number of threads to use for parallel regions

export OMP_NUM_THREADS=4

Set the number of threads (2)

› Function call
– Accepts an integer

– Can be used everywhere where inside your code

› Also in sequential parts

› Don't forget to #include <omp.h>!!

› Overrides value from OMP_NUM_THREADS
– Affects all of the subsequent parallel regions

14

/*

* The omp_set_num_threads routine affects the number of threads

* to be used for subsequent parallel regions that do not specify

* a num_threads clause, by setting the value of the first

* element of the nthreads-var ICV of the current task.

*/

void omp_set_num_threads(int num_threads);

omp.h

Set the number of threads (1)

15

#pragma omp parallel [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([parallel :] scalar-expression)

num_threads (integer-expression)

default(shared | none)

firstprivate (list)

private (list)

shared (list)

copyin (list)

reduction(reduction-identifier : list)

proc_bind(master | close | spread)

Exercise

› Spawn a team of parallel (OMP)Threads
– Each printing "Hello Parallel World. I am thread #<tid> out of <num>"

– Also, print "Hello Sequential World. I am thread #<tid> out of <num>" before
and after parreg

– Play with
› OMP_NUM_THREADS

› omp_set_num_threads

› num_threads

› Do it at home

16

Let's

code!

The if clause

› If scalar-expression is false, then spawn a single-thread
region

› We will see it also in other constructs…
– "Can be used in combined constructs, in this case programmer must specify which

one it refers to (in this case, with the parallel specifier)"

17

#pragma omp parallel [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([parallel :] scalar-expression)

num_threads (integer-expression)

default(shared | none)

firstprivate (list)

private (list)

shared (list)

copyin (list)

reduction(reduction-identifier : list)

proc_bind(master | close | spread)

Algorithm that determines #threads

› OpenMP Specifications
– Section 2.1

– http://www.openmp.org

18

http://www.openmp.org/

Even more control…

› OpenMP provides fine-grain tuning of all the main "control
knobs"
– Dynamic thread number adjustment

– Nesting level

– Threads stack size

– …

› More and more with every new version of specifications

19

Nested parallel regions

› One can create a parallel region within a parallel region
– A new team of thread is created

› Enabled-disabled via environmental var, or library call

› Easy to lose control..
– Too many threads!

– Their number explodes

– Be ready to debug..

20

Dynamic # threads adjustment

› The OpenMP implementation might decide to dynamically
adjust the number of thread within a parreg
– Aka the team size

– Under heavy load might be reduced

› Also this can be disabled

21

Threads stack size

› Can specify low-level details such as the stack size
– Why only via environmental var?

22

The OMP_STACKSIZE environment variable controls the size of the stack

for threads created by the OpenMP implementation,

by setting the value of the stacksize-var ICV.

The environment variable does not control the size of the stack

for an initial thread.

The value of this environment variable takes the form:

size | sizeB | sizeK | sizeM | sizeG

setenv OMP_STACKSIZE 2000500B

setenv OMP_STACKSIZE "3000 k "

setenv OMP_STACKSIZE 10M

setenv OMP_STACKSIZE " 10 M "

setenv OMP_STACKSIZE "20 m "

setenv OMP_STACKSIZE " 1G"

setenv OMP_STACKSIZE 20000

Process (shared) memory space

› Per-thread stack
– Still, accessible

– auto vars

– Stack overflow!!

› Common heap
– malloc/new

› BSS, text
– …

23

P0 Shared memory

Free space

T

T

T

T2 Stack

T1 Stack

Per-thread

stack size

HEAP

BSS, txt...

T0 Stack

0x0

0x10000000

Under the hood

› You have control on # threads
– Partly

› You have parial control on where the threads are scheduled
– Affinity

› You have no control on the actual scheduling!
– Demanded to OS + runtime

› …"OS and runtime"?

24

OpenMP software stack

Multi-layer stack, engineered for portability

› Application code
– Compliant to OMP standard

› Runtime (e.g., GCC-OpenMP)
– Provides services for parallelism

– Compiler replaces pragma with
runtime-specific function calls

› OS (e.g., Linux)
– Provides basic services

– Threading, memory mgmt, synch

– Can be standardized (e.g., PThreads)

25

User code

#pragma omp parallel

Operating System

Hardware

OpenMP runtime

CPU
0

CPU
1

CPU
2

CPU
3

T TT T

T

GOMP_parallel(…)

pthread_create(…)

Thread scheduling (algorithm)

How to run the examples

› Download the Code/ folder from the course website

› Compile

› $ gcc –fopenmp code.c -o code

› Run (Unix/Linux)

$./code

› Run (Win/Cygwin)

$./code.exe

26

Let's

code!

References

› "Calcolo parallelo" website
– http://hipert.unimore.it/people/paolob/pub/PhD/index.html

› My contacts
– paolo.burgio@unimore.it

– http://hipert.mat.unimore.it/people/paolob/

› Useful links
– http://www.google.com

– http://www.openmp.org

– https://gcc.gnu.org/

› A "small blog"
– http://www.google.com

27

http://hipert.unimore.it/people/paolob/pub/PhD/index.html
mailto:paolo.burgio@unimore.it
http://hipert.mat.unimore.it/people/paolob/
http://www.google.com/
http://www.openmp.org/
https://gcc.gnu.org/

