
An introduction to 
parallel programming

Paolo Burgio
paolo.burgio@unimore.it



Definitions

› Parallel computing
– Partition computation across different compute engines

› Distributed computing
– Paritition computation across different machines

Same principle, more general

2



Outline

› Introduction to "traditional" programming
– Writing code

– Operating systems

– …

› Why do we need parallel programming?
– Focus on programming shared memory

› Different ways of parallel programming
– PThreads

– OpenMP

– MPI?

– GPU/accelerators programming

3



As a side…

› A bit of computer architecture
– We will understand why…

– Focus on shared memory systems

› A bit of algorithms
– We will understand why…

› A bit of performance analysis
– Which is our ultimate goal!

– Being able to identify bottlenecks

4



Programming basics



Take-aways

› Programming basics
– Variables

– Functions

– Loops

› Programming stacks
– BSP

– Operating systems

– Runtimes

› Computer architectures
– Computing domains

– Single processor/multiple processors

– From single- to multi- to many- core

6



Why do we need parallel computing?

Increase performance of our machines

› Scale-up
– Solve a "bigger" problem in the same time

› Scale-out
– Solve the same problem in less time

7



Yes but..

› Why (highly) parallel machines…

› …and not faster single-core machines?

8



The answer #1 - Money

9



The answer #2 – the "hot" one

Moore's law

› "The number of transistors that we can pack in a given die area doubles 
every 18 months"

Dennard's scaling

› "performance per watt of computing is growing exponentially at roughly 
the same rate"

10



Transistors (K’s)

Clock (MHz)

Power (W)

Perf/Clock (ILP)

› SoC design paradigm

› Gordon Moore

– His law is still valid, but…

Performance


frequency

The answer #2 – the "hot" one

11



Transistors (K’s)

Clock (MHz)

Power (W)

Perf/Clock (ILP)

› SoC design paradigm

› Gordon Moore

– His law is still valid, but…

› “The free lunch is over”
– Herb Sutter, 2005

The answer #2 – the "hot" one

11

Performance


parallelism



In other words…

1970 1980 1990 2000 2010 2020

Hot plate

Summer
temperature

Nuclear
Reactor

Surface of
the sun

Rocket
nozzle

First PCs

The explosion
of web

Modern
computers

12



Instead of going faster..

› ..(go faster but through) parallelism!

Problem #1

› New computer architectures

› At least, three architectural templates

Problem #2

› Need to efficiently program them

› HPC already has this problem!

The problem

› Programmers must know a bit of the architecture!

› To make parallelization effective

› "Let's run this on a GPU. It certainly goes faster" (cit.)

13



The Big problem

› Effectively programming in parallel is difficult

“Everyone knows that debugging is 
twice as hard as writing a program in 

the first place.

So if you're as clever as you can be 
when you write it, how will you ever 

debug it?”

14



I am *really* sorry guys..

› I will give you code…

› ..but first I need to give you some maths…

› …and then, some architectual principles

15



Amdahl's Law



Amdahl's law

› A sequential program that takes 100 sec to exec

› Only 95% can run in parallel (it's a lot)

› And.. you are an extremely good programmer, and you have a machine with 1billion
cores, so that part takes 0 sec

› So,
𝑇𝑝𝑎𝑟 = 100𝑠𝑒𝑐 − 95𝑠𝑒𝑐 = 5𝑠𝑒𝑐

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
100𝑠𝑒𝑐
5𝑠𝑒𝑐

= 20𝑥

…20x, on one billion cores!!!

17



Computer 
architecture



Step-by-step

1. "Traditional" multi-cores
– Typically, shared-memory

– Max 8-16 cores

– This laptop

2. Many-cores
– GPUs but not only

– Heterogeneous architectures

3. More advanced stuff
– Field-programmable Gate Arrays

– Neural Networks

19



Symmetric multi-processing

› Memory: centralized with bus interconnect, I/O

› Typically, multi-core (sub)systems
– Examples: Sun Enterprise 6000, SGI Challenge, Intel (this laptop)

CPU 
0

One or 
more 
cache
levels

Main memory

CPU 
1

One or 
more 
cache
levels

CPU 
2

One or 
more 
cache
levels

CPU 
3

One or 
more 
cache
levels

I/O system

Can be 1 bus, N 
busses, or any 

network

20



Asymmetric multi-processing

› Memory: centralized with uniform access time (UMA) and bus 
interconnect, I/O

› Typically, multi-core (sub)systems
– Examples: ARM Big.LITTLE, NVIDIA Tegra X2 (Drive PX)

CPU 
0

One or 
more 
cache
levels

Main memory

CPU 
1

One or 
more 
cache
levels

CPU 
A

One or 
more 
cache
levels

CPU 
B

One or 
more 
cache
levels

I/O system

Can be 1 bus, N 
busses, or any 

network

21



SMP – distributed shared memory

› Non-Uniform Access Time - NUMA

› Scalable interconnect
– Typically, many cores

– Examples: embedded accelerators, GPUs

CPU 
0

$

Main memory

SPM

I/O system

$ = "cache" CPU 
1

$

SPM

CPU 
2

$

SPM

CPU 
3

$

SPM
ScratchPad
Memory

Scalable 
interconnection

22



Go complex: NVIDIA's Tegra

› Complex heterogeneous system
– 3 ISAs

– 2 subdomains

– Shmem between Big.SUPER host and GP-GPU

23



NUMAUMA

UMA vs. NUMA

› Shared mem: every thread can access every memory item
– (Not considering security issues…)

› Uniform Memory Access (UMA) vs Non-Uniform Memory Access (NUMA)
– Different access time for accessing different memory spaces

CPU 
0

CPU 
1

CPU 
3

CPU 
2

SPM
0

CPU 
12

CPU 
13

CPU 
15

CPU 
14

SPM
3

CPU 
4

CPU 
5

CPU 
7

CPU 
6

CPU 
8

CPU 
9

CPU 
11

CPU 
10

SPM
1

SPM
2

CPU 
0

CPU 
1

CPU 
3

CPU 
2

MAIN
MEM

24



NUMAUMA

UMA vs. NUMA

› Shared mem: every thread can access every memory item
– (Not considering security issues…)

› Uniform Memory Access (UMA) vs Non-Uniform Memory Access (NUMA)
– Different access time for accessing different memory spaces

CPU 
0

CPU 
1

CPU 
3

CPU 
2

SPM
0

CPU 
12

CPU 
13

CPU 
15

CPU 
14

SPM
3

CPU 
4

CPU 
5

CPU 
7

CPU 
6

CPU 
8

CPU 
9

CPU 
11

CPU 
10

SPM
1

SPM
2

CPU 
0

CPU 
1

CPU 
3

CPU 
2

MAIN
MEM

MEM0 MEM1 MEM2 MEM3

CPU0…3 0 clock 10 clock 20 clock 10 clock

CPU4…7 10 clock 0 clock 10 clock 20 clock

CPU8…11 20 clock 10 clock 0 clock 10 clock

CPU12..15 10 clock 20 clock 10 clock 00 clock

24



Some definitions



What is…

› ..a core?
– An electronic circuit to execute instruction (=> programs)

› …a program?
– The implementation of an algorithm

› …a process?
– A program that is executing

› …a thread?
– A unit of execution (of a process)

› ..a task?
– A unit of work (of a program)

27



What is…

› ..a core?
– An electronic circuit to execute instruction (=> programs)

› …a program?
– The implementation of an algorithm

› …a process?
– A program that is executing

› …a thread?
– A unit of execution (of a process)

› ..a task?
– A unit of work (of a program)

28

T

t code.c DATA

CORE
0

CORE 
1

CORE
3

CORE 
2

MEM

code.c

DATA
DATA

code.c
code.c

P SHARED 
MEMT

TT



What is a task?

Operating 
System

task

Real-time
task

OpenMP
task

29



P0 P1

Symmetric multi-processing

› Memory: centralized with bus interconnect, I/O

› Typically, multi-core (sub)systems
– Examples: Sun Enterprise 6000, SGI Challenge, Intel (this laptop)

CPU 
0

One or 
more 
cache
levels

Main memory

CPU 
1

One or 
more 
cache
levels

CPU 
2

One or 
more 
cache
levels

CPU 
3

One or 
more 
cache
levels

I/O system

T TT T T

Can be 1 bus, N 
busses, or any 

network

30



..start simple…



Something you're used to..

› Multiple processes

› That communicate via shared data 

Process
P0

????

T

Process
P1

T

(read, write)

(read, write)

DATUM

32



Howto #1 - MPI

› Multiple processes

› That communicate via shared data 

Process
P0

T

Process
P1

T

DATUM

MPI_Send

MPI_Recv

33



Howto #2 – UNIX pipes

› Multiple processes

› That communicate via shared data 

Process
P0

T

Process
P1

T

DATUM

int main(void)

{

int fd[2], nbytes;

char string[] = "Hello, world!\n";

pipe(fd);

/* Send "string" through

the output side of pipe */

write(fd[1], string,

(strlen(string)+1));

return(0);

}

int main(void)

{

int fd[2], nbytes; pipe(fd);

/* Receive "string" from

the input side of pipe */

nbytes = read(fd[0], readbuffer,

sizeof(readbuffer));

return(0);

}

34



File.txt

Howto #3 – Files

› Multiple processes

› That communicate via shared data 

Process
P0

T

Process
P1

T

DATUM

35



Shared memory

› Coherence problem
– Memory consistency issue

– Data races

› Can share data ptrs
– Ease-to-use

Process
P0

Shared memory

T
T

T

(read, write)
(read, write)

DATUM

36



References

› "Calcolo parallelo" website
– http://hipert.unimore.it/people/paolob/pub/PhD/index.html

› My contacts
– paolo.burgio@unimore.it

– http://hipert.mat.unimore.it/people/paolob/

› Useful links

› A "small blog"
– http://www.google.com

37

http://hipert.unimore.it/people/paolob/pub/PhD/index.html
mailto:paolo.burgio@unimore.it
http://hipert.mat.unimore.it/people/paolob/
http://www.google.com/

