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Definitions

› Parallel computing
– Partition computation across different compute engines

› Distributed computing
– Paritition computation across different machines

Same principle, more general
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Outline

› Introduction to "traditional" programming
– Writing code

– Operating systems

– …

› Why do we need parallel programming?
– Focus on programming shared memory

› Different ways of parallel programming
– PThreads

– OpenMP

– MPI?

– GPU/accelerators programming
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As a side…

› A bit of computer architecture
– We will understand why…

– Focus on shared memory systems

› A bit of algorithms
– We will understand why…

› A bit of performance analysis
– Which is our ultimate goal!

– Being able to identify bottlenecks
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Programming basics



Take-aways

› Programming basics
– Variables

– Functions

– Loops

› Programming stacks
– BSP

– Operating systems

– Runtimes

› Computer architectures
– Computing domains

– Single processor/multiple processors

– From single- to multi- to many- core
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Why do we need parallel computing?

Increase performance of our machines

› Scale-up
– Solve a "bigger" problem in the same time

› Scale-out
– Solve the same problem in less time
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Yes but..

› Why (highly) parallel machines…

› …and not faster single-core machines?
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The answer #1 - Money
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The answer #2 – the "hot" one

Moore's law

› "The number of transistors that we can pack in a given die area doubles 
every 18 months"

Dennard's scaling

› "performance per watt of computing is growing exponentially at roughly 
the same rate"
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Transistors (K’s)

Clock (MHz)

Power (W)

Perf/Clock (ILP)

› SoC design paradigm

› Gordon Moore

– His law is still valid, but…

Performance


frequency

The answer #2 – the "hot" one
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Transistors (K’s)

Clock (MHz)

Power (W)

Perf/Clock (ILP)

› SoC design paradigm

› Gordon Moore

– His law is still valid, but…

› “The free lunch is over”
– Herb Sutter, 2005

The answer #2 – the "hot" one

11

Performance


parallelism



In other words…
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Instead of going faster..

› ..(go faster but through) parallelism!

Problem #1

› New computer architectures

› At least, three architectural templates

Problem #2

› Need to efficiently program them

› HPC already has this problem!

The problem

› Programmers must know a bit of the architecture!

› To make parallelization effective

› "Let's run this on a GPU. It certainly goes faster" (cit.)
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The Big problem

› Effectively programming in parallel is difficult

“Everyone knows that debugging is 
twice as hard as writing a program in 

the first place.

So if you're as clever as you can be 
when you write it, how will you ever 

debug it?”
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I am *really* sorry guys..

› I will give you code…

› ..but first I need to give you some maths…

› …and then, some architectual principles
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Amdahl's Law



Amdahl's law

› A sequential program that takes 100 sec to exec

› Only 95% can run in parallel (it's a lot)

› And.. you are an extremely good programmer, and you have a machine with 1billion
cores, so that part takes 0 sec

› So,
𝑇𝑝𝑎𝑟 = 100𝑠𝑒𝑐 − 95𝑠𝑒𝑐 = 5𝑠𝑒𝑐

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
100𝑠𝑒𝑐
5𝑠𝑒𝑐

= 20𝑥

…20x, on one billion cores!!!

17



Computer 
architecture



Step-by-step

1. "Traditional" multi-cores
– Typically, shared-memory

– Max 8-16 cores

– This laptop

2. Many-cores
– GPUs but not only

– Heterogeneous architectures

3. More advanced stuff
– Field-programmable Gate Arrays

– Neural Networks
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Symmetric multi-processing

› Memory: centralized with bus interconnect, I/O

› Typically, multi-core (sub)systems
– Examples: Sun Enterprise 6000, SGI Challenge, Intel (this laptop)

CPU 
0

One or 
more 
cache
levels

Main memory

CPU 
1

One or 
more 
cache
levels

CPU 
2

One or 
more 
cache
levels

CPU 
3

One or 
more 
cache
levels

I/O system

Can be 1 bus, N 
busses, or any 

network
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Asymmetric multi-processing

› Memory: centralized with uniform access time (UMA) and bus 
interconnect, I/O

› Typically, multi-core (sub)systems
– Examples: ARM Big.LITTLE, NVIDIA Tegra X2 (Drive PX)

CPU 
0

One or 
more 
cache
levels

Main memory

CPU 
1

One or 
more 
cache
levels

CPU 
A
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B

One or 
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cache
levels

I/O system

Can be 1 bus, N 
busses, or any 

network
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SMP – distributed shared memory

› Non-Uniform Access Time - NUMA

› Scalable interconnect
– Typically, many cores

– Examples: embedded accelerators, GPUs

CPU 
0

$

Main memory

SPM

I/O system

$ = "cache" CPU 
1

$

SPM

CPU 
2

$

SPM

CPU 
3

$
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ScratchPad
Memory

Scalable 
interconnection
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Go complex: NVIDIA's Tegra

› Complex heterogeneous system
– 3 ISAs

– 2 subdomains

– Shmem between Big.SUPER host and GP-GPU
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NUMAUMA

UMA vs. NUMA

› Shared mem: every thread can access every memory item
– (Not considering security issues…)

› Uniform Memory Access (UMA) vs Non-Uniform Memory Access (NUMA)
– Different access time for accessing different memory spaces
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10

SPM
1

SPM
2

CPU 
0

CPU 
1

CPU 
3

CPU 
2

MAIN
MEM
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NUMAUMA

UMA vs. NUMA

› Shared mem: every thread can access every memory item
– (Not considering security issues…)

› Uniform Memory Access (UMA) vs Non-Uniform Memory Access (NUMA)
– Different access time for accessing different memory spaces
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MEM0 MEM1 MEM2 MEM3
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CPU12..15 10 clock 20 clock 10 clock 00 clock
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Some definitions



What is…

› ..a core?
– An electronic circuit to execute instruction (=> programs)

› …a program?
– The implementation of an algorithm

› …a process?
– A program that is executing

› …a thread?
– A unit of execution (of a process)

› ..a task?
– A unit of work (of a program)
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What is…

› ..a core?
– An electronic circuit to execute instruction (=> programs)

› …a program?
– The implementation of an algorithm

› …a process?
– A program that is executing

› …a thread?
– A unit of execution (of a process)

› ..a task?
– A unit of work (of a program)
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What is a task?

Operating 
System

task

Real-time
task

OpenMP
task
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P0 P1

Symmetric multi-processing

› Memory: centralized with bus interconnect, I/O

› Typically, multi-core (sub)systems
– Examples: Sun Enterprise 6000, SGI Challenge, Intel (this laptop)
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..start simple…



Something you're used to..

› Multiple processes

› That communicate via shared data 

Process
P0

????

T

Process
P1

T

(read, write)

(read, write)

DATUM
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Howto #1 - MPI

› Multiple processes

› That communicate via shared data 

Process
P0

T

Process
P1

T

DATUM

MPI_Send

MPI_Recv
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Howto #2 – UNIX pipes

› Multiple processes

› That communicate via shared data 

Process
P0

T

Process
P1

T

DATUM

int main(void)

{

int fd[2], nbytes;

char string[] = "Hello, world!\n";

pipe(fd);

/* Send "string" through

the output side of pipe */

write(fd[1], string,

(strlen(string)+1));

return(0);

}

int main(void)

{

int fd[2], nbytes; pipe(fd);

/* Receive "string" from

the input side of pipe */

nbytes = read(fd[0], readbuffer,

sizeof(readbuffer));

return(0);

}
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File.txt

Howto #3 – Files

› Multiple processes

› That communicate via shared data 

Process
P0

T

Process
P1

T

DATUM
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Shared memory

› Coherence problem
– Memory consistency issue

– Data races

› Can share data ptrs
– Ease-to-use

Process
P0

Shared memory

T
T

T

(read, write)
(read, write)

DATUM
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References

› "Calcolo parallelo" website
– http://hipert.unimore.it/people/paolob/pub/PhD/index.html

› My contacts
– paolo.burgio@unimore.it

– http://hipert.mat.unimore.it/people/paolob/

› Useful links

› A "small blog"
– http://www.google.com
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