An introduction to
parallel programming

Paolo Burgio
paolo.burgio@unimore.it

| HigeRT

Definitions

> Parallel computing

— Partition computation across different compute engines

> Distributed computing

— Paritition computation across different machines

Same principle, more general

Outline

> Introduction to "traditional" programming
— Writing code
— QOperating systems

> Why do we need parallel programming?

— Focus on programming shared memory

> Different ways of parallel programming
— PThreads
— OpenMP
- MPI?
— GPU/accelerators programming

As a side...

> A bit of computer architecture

— We will understand why...
— Focus on shared memory systems

> A bit of algorithms

— We will understand why...

> A bit of performance analysis
— Which is our ultimate goall!
— Being able to identify bottlenecks

Programming basics

Take-aways

> Programming basics

— Variables
— Functions
— Loops

> Programming stacks
— BSP
— QOperating systems
— Runtimes

> Computer architectures
— Computing domains
— Single processor/multiple processors
— From single- to multi- to many- core

Why do we need parallel computing?

Increase performance of our machines

> Scale-up

— Solve a "bigger" problem in the same time

> Scale-out

— Solve the same problem in less time

Yes but..

> Why (highly) parallel machines...

> ...and not faster single-core machines?

The answer #1 - Money

The answer #2 — the "hot" one

Moore's law

> "The number of transistors that we can pack in a given die area doubles
every 18 months"

Dennard's scaling

> "performance per watt of computing is growing exponentially at roughly
the same rate"

10

The answer #2 — the "hot" one

> SoC design paradigm 10,000,000

1,000,000
Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun}
100,000
10,000
> Gordon Moore
— His law is still valid, but... 1,000

Performance
>
frequency

A Power (W)

@ Perf/Clock (ILP)

1970 1975 1980 1985 1990 1995 2000 2005 _ 2010
LA

e 11

The answer #2 — the "hot" one

> SoC design paradigm 10,000,000
1,000,000
Intel CPU Trends
{sources: Intel, Wikipedia, K. Olukotun}
100,000

10,000

> Gordon Moore

— His law is still valid, but... 1,000

100

> “The free lunch is over”
— Herb Sutter, 2005 .

.[o B Transistors (K’s)
Performance ~ & “Clock (MH2)
9 ®oo A Power (W)
: © Perf/Clock (ILP)
,Daf'a//ellsm 0 1875 1980 1985 1990 1995 2000 2005 _ 2010

LA]

o 11

Surface of
the sun

¢y

Rocket
nozzle

Nuclear
Reactor

of web

Summer : @0-0-@ \./Q

temperature

J 4
/‘ i
The explosion

1970 1980 1990 000 2010

Instead of going faster..

> ..(go faster but through) parallelism!

Problem #1
> New computer architectures

> At least, three architectural templates

Problem #2
> Need to efficiently program them

> HPC already has this problem!

The problem
> Programmers must know a bit of the architecture!
> To make parallelization effective

> "Let's run this on a GPU. It certainly goes faster" (cit.)

13

The Big problem

> Effectively programming in parallel is difficult

Brian Kernighan (1942-)

- Researcher, theory of informatics

- Co-authored UNIX and AWK

- Wrote "The C Programming Language" book

“Everyone knows that debugging is
twice as hard as writing a program in
the first place.

So if you're as clever as you can be

when you write it, how will you ever
debug it?”

14

| am *really® sorry guys..

> | will give you code...

> ..but first | need to give you some maths...

> ...and then, some architectual principles

15

Amdahl's Law

Amdahl's law

> A sequential program that takes 100 sec to exec

> Only 95% can run in parallel (it's a lot)

> And.. you are an extremely good programmer, and you have a machine with 1billion
cores, so that part takes 0 sec

> So,
Tpar = 1005ec — 955ec = Sgec
00
Speedup = > = 20x
Ssec

...20x, on one billion cores!!!

17

Computer
architecture

Step-by-step

1. "Traditional" multi-cores

— Typically, shared-memory
— Max 8-16 cores
— This laptop

2. Many-cores

— GPUs but not only
— Heterogeneous architectures

3. More advanced stuff

— Field-programmable Gate Arrays
— Neural Networks

19

Symmetric multi-processing

> Memory: centralized with bus interconnect, I/O

> Typically, multi-core (sub)systems
— Examples: Sun Enterprise 6000, SGI Challenge, Intel (this laptop)

One or One or
more more
cache cache
levels levels

I I I I
I !

20

interconnect, 1/0

> Typically, multi-core (sub)systems
— Examples: ARM Big.LITTLE, NVIDIA Tegra X2 (Drive PX)

Asymmetric multi-processing

> Memory: centralized with uniform access time (UMA) and bus

One or
more
cache
levels

One or
more
cache
levels

Main memory

/0 system

21

SMP - distributed shared memory

> Non-Uniform Access Time - NUMA

> Scalable interconnect

— Typically, many cores
— Examples: embedded accelerators, GPUs

CPU

SR
ScratchPad SPM R SPM R
emory

v v v v

‘ I / O SYSte . =

3
S e

2
S e

SPV Rag SPM Rae

I

22

Go complex: NVIDIA's Tegra

> Complex heterogeneous system

— 3 1ISAs
— 2 subdomains
— Shmem between Big.SUPER host and GP-GPU

R — e —
AUT@@SAR OpenMP X ||AUT@SAR | |
— NVIDIA : —
RTE | RUNTIME | rE
. . * |
Programming model(s) abstraction S
nviDIA
F==-n et T . | “H0A | HREDICTABLE Pass
_Em i . % EXTENSIONS through
! \ I | | ')]‘If 1
Hypeméor abstt'abtlon : : i
: Blg l1tﬂ¢ managemqm ' q GPU management / firmwa'e :
= !
n - “ i Tricore
“Big.LITTLE-like” core i ASIL-D
4 cortex A57 + 4 cortex A53 i
!
| ISA subdomain #1 ISA subdomain #2 ISA subdomain #3

23

UMA vs. NUMA

> Shared mem: every thread can access every memory item

— (Not considering security issues...)

> Uniform Memory Access (UMA) vs Non-Uniform Memory Access (NUMA)

— Different access time for accessing different memory spaces

UMA NUMA
F S — R

24

UMA vs. NUMA

MEMO MEM1 MEM2 MEM3
CPUO...3 0 clock 10 clock 20 clock 10 clock
CPUA4...7 10 clock 0 clock 10 clock 20 clock
CPU8...11 20 clock 10 clock 0 clock 10 clock
CPU12.15 10 clock 20 clock 10 clock 00 clock
UMA O\ NUMA

CPU

CPU CPU
0 1

CPU CPU
3 2

CPU
8

CPU
11

CPU
9

CPU
10

Some definitions

What is...

..a core?
— An electronic circuit to execute instruction (=> programs)

v

> ..aprogram?
— The implementation of an algorithm

> .. process?
— A program that is executing

> ...athread?
— A unit of execution (of a process)
> ..atask?

— A unit of work (of a program)

v

What is...
..a core?
— An electronic circuit to execute instruction (=> programs)

> ..aprogram? code.c
. . . |
— The implementation of an algorithm [

> .. process?

— A program that is executing
> ...athread? k

— A unit of execution (of a process)
> ..atask?

- Aunitofworaap am) code . o J

What is a task? [EE p-socRrATES

Operating
System
task

Real-time
task

Symmetric multi-processing

> Memory: centralized with bus interconnect, I/O

> Typically, multi-core (sub)systems
— Examples: Sun Enterprise 6000, SGI Challenge, Intel (this laptop)

One or One or
more more
cache cache
levels levels

I I I I
I I

30

..Sstart simple...

Something you're used to..

> Multiple processes

> That communicate via shared data

(read, write)

(read, write)

32

. Howto #1 - MPI

> Multiple processes

> That communicate via shared data

ATNPI

Y-

33

Howto #2 — UNIX pipes

> Multiple processes

> That communicate via shared data

int main (void)

{

int main (void)

{
int fd[2], nbytes; int fd[?], nbytes; pipe (fd);
char string[] = "Hello, world!\n"; /* Receive "string" from
pipe (£4); the input side of pipe */
nbytes = read(fd[0], readbuffer,

/* Send "string" through sizeof (readbuffer));

the output side of pipe */
write (fd[1], string,
(strlen(string)+1));

return (0) ; ;;7
}

return (0) ;

}

34

Howto #3 — Files

> Multiple processes

> That communicate via shared data

-

File.txt

l

Shared memory

> Coherence problem
— Memory consistency issue
— Data races

> Can share data ptrs

— Ease-to-use

Shared mamory

References N2

> "Calcolo parallelo” website
— http://hipert.unimore.it/people/paolob/pub/PhD/index.html

> My contacts

— paolo.burgio@unimore.it

— http://hipert.mat.unimore.it/people/paolob/

> Useful links

> A "small blog"

— http://www.google.com

37

http://hipert.unimore.it/people/paolob/pub/PhD/index.html
mailto:paolo.burgio@unimore.it
http://hipert.mat.unimore.it/people/paolob/
http://www.google.com/

