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Abstract—As autonomous cars are entering mainstream, new
research directions are opening involving several domains, from
hardware design to control systems, from energy efficiency to
computer vision. An exciting direction of research is represented
by the coordination of the different vehicles, moving the focus
from the single one to a collective system.

In this paper we propose some challenging examples that
show the motivations for a coordination approach in autonomous
driving. Moreover, we present some techniques borrowed from
distributed artificial intelligence that can be exploited to tackle
the previously mentioned challenges.

Index Terms—adaptation, autonomous driving, socio-technical
systems.

I. INTRODUCTION

The next generation of cars will be composed of fully-

and partly-automated vehicles that drive in our streets with

little or no human intervention. Despite fully fledged Self-

Driving Cars will be commercialized only in 10-15 years,

vehicles with limited autonomous capabilities (the so-called

Advanced Driving Assistant Systems, or ADAS) are already

part of our lives, and prototypes such as Google Car [1] and

the Tesla ADAS [2] already performed thousands of kilometers

of testing/validation. Interestingly, as of today, researchers

mainly focus on the problem for each of the three main

ADAS sub-systems (perception-planning-actuation), but only

at the level of the single vehicle. We believe that is extremely

interesting, and to some extent crucial, to enlarge our per-

spective, and taking into the picture multiple vehicles that

interact and coordinate among themselves while driving in the

street. Algorithms from artificial vision, real-time scheduling

and energy/power reduction might benefit from the additional

information coming from other vehicles, and decisions i.e., on

path planning can be taken accordingly to other cars’ needs.

Until now, prototype of autonomous cars have been tested

in a sort of protected environment, always alone: the only

interaction with other vehicles has been recognizing them by

cameras and avoiding to collide with them. The next step is

to enable a proactive interaction among autonomous vehicles,

in order to better exploit resources and to facilitate goal

achievement.

We must consider two kinds of interaction: collaborative
and competitive; in the former, the considered vehicles have

the same goal and collaborate to achieve it; in the latter, each

vehicle is self-interested and must compete with other vehicles

to achieve its goal.

Several researches have addressed the Vehicle-to-Vehicle

(V2V) or Vehicle-to-Infrastructure (V2I) collaboration [3],

mainly supported by Vehicular Ad hoc NETworks (VANETs)

[4], and they can be considered at the base of vehicles

coordination. However, they focus more on the communication

between vehicles, not on higher-level collaboration algorithms,

and they do not take into consideration autonomous vehicles.

II. MOTIVATIONS

In this section we present some challenging examples and

situations that can benefit from applying adaptive coordination

in autonomous driving.

A. Crossings

Being deployed on a 2D plane, our streets must intersect

with each other forming crossings. Having vehicles coming

from at least three ways, they have to coordinate to exploit

the “crossing resource” in such a way to avoid collisions.

The traditional way to coordinate vehicles in a crossing is

to use traffic lights, which however do not enable the best

exploitation of the “crossing resource”, because they stop

vehicles even when no other vehicles are crossing.

Another approach is to exploit roundabouts, which are

circular street intersections where vehicles must yield to the

vehicles coming from left. This is more adaptive than traffic

lights, and the “crossing resource” is not wasted. However,

roundabouts can be built where enough space is available,

typically not in the city centers; moreover, starvation is

possible when one of crossing street has a high flow of traffic.

In this example, an approach to manage the crossing access

in an adaptive and decentralized way is deserved. Adaptive
because it must adapt the management to different conditions,

priorities and constraints; decentralized to avoid bottlenecks

and single point of failures

B. Turning Left

Connected to the previous example, turning left (or right

in some countries) represents another interesting case for

autonomous driving, where, differently from the previous case,

the crossing could be not regulated by a traffic light. Turning

left requires the coordination with the vehicles coming from

the opposite direction, which have the right of way and the

turning vehicle must yield. This example exhibit issues similar

to the previous one.
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C. Parking

As known by people living in big cities, parking can be

a nightmare in given periods and/or given areas. One first

aspect is the valet parking, which means that the car parks

autonomously once a free slot is found. Even if solutions have

been proposed at the end of the last century [5], only now some

cars are equipped with appropriate devices to enact automatic

valet parking. We can foresee a near future when drivers can

leave their cars at the entrance of a parking area and the cars

autonomously find a free slot where to wait for their owners.

The second aspect is more complex but useful as well. We

envision a world where vehicles can “book” parking slots in

advance. Of course, to avoid resource waste, a coordination

with the vehicle(s) that will leave the slot at the right time

is needed. In addition, in smart cities, it will be possible

to automatically detect free parking spots in the whole city

area, thanks to IoT-capable monitoring cameras. In this case,

both V2V and V2I are involved. We remark that a centralized

infrastructure can be exploited to provide vehicles with needed

information, but it is not feasible to take decision, due to

scalability and dynamism requirements.

D. Behavior Learning

We can imagine that autonomous vehicles will learn from

the environment where they drive how to behave. With “en-

vironment” we aim at being very general, from the street

conditions to the typical weather, from the traffic load to the

user herself, who can specify some preferences. Of course, the

learned behavior is related to the environment where typically

the user moves by the vehicle. However, when the user drives

in a new environment (e.g., during holidays), the environment

can change and the vehicle is likely to need to learn a new

behavior. To this purpose, the vehicle can interact with other

vehicles in the new environment, which are used to that

environment and can provide information about the roads, the

weather, the traffic, and so on. We remark that this learning

is not trivial, because the vehicle can be flood by information

from other vehicles, and a careful coordination is needed to

avoid “garbage” pieces of information.

E. Traffic

In general, the traffic jam situations represents an interesting

case study for our aims. Currently, each vehicle is equipped

with a personal navigator device that provides information

about the routing. Connected vehicles can retrieve information

about the traffic and their navigators can suggest alternative

paths to avoid traffic jams. However, this can lead to an odd

situation where a lot of vehicles “choose” an alternative path,

causing its congestion as well. In this case, a coordination of

several vehicles is required. However, a centralized coordi-

nation is very hard to be enacted, because the situation can

change dynamically in a very fast way; vehicles can enter

and exit the interested area, drivers can change their target,

accident can happen, and so on.

III. PERSPECTIVES

In our work we have evaluated some possible techniques

to apply to autonomous driving, taken from multi-agent sys-

tems [6], autonomic computing [7] and self-organizing sys-

tems [8]. We discuss how traditional auction based approach

might be implemented to serve ADAS scenarios as well as

alternative paradigms of coordination that takes inspiration

from swarm intelligence [9], such as bio-inspired approaches

and other environment mediated coordination strategies. Sev-

eral approaches have been proposed that take inspiration from

nature, biology and similar disciplines [10]. In fact, living

beings enact coordination mechanisms and policies that are

likely to be the result of the evolution in several hundreds or

thousands of years, so they are effective for their purposes.

Even is their purposes are often simple, the advantage is

twofold: from the one hand, we can take inspiration from sim-

ple living beings, so their mechanism are easier to understand

and to replicate on artificial beings; on the other hand, there

are no centralized control, avoiding bottlenecks and single

points of failure, and improving scalability and robustness [11]

in highly distributed complex systems. The next subsections

will provide more details regarding these approaches, while

TABLE I summarizes their applicability to the case studies.

A. Auctions

A first, well-know and wide-adopted technique is repre-

sented by the auctions [12]. They have been applied to the

management of intersections [13], but in our opinion can

be exploited for a broader range of situations. In fact, this

is quite simple yet flexible and effective, and requires a

little centralization. The entities that aim at using a resource

“bid” for that resource and an authority collects the bids and

define the winner (usually the highest bid, but variations are

possible); auctions can be held in a given period of time,

during which bidders can change their bid. In our case, a

vehicle can bid for a “slot” in an intersection or in a parking

area; of course, the bid amount depends on different aspects

(availability of slots, available time, agreement with friends,

hurry, and so on).

B. Ant Colony Optimization

Another deep-studied technique to coordinate software com-

ponents is the one inspired by ant behavior [14]. This tech-

nique is quite simple but can be very effective; it is based

on the fact that ants leave signals (called “pheromones”)

on their path, and those signals fan be enforced (if more

ants leave the signal in the same place) or decreased (they

“evaporate” after a given time) depending on the interest on the

path. An interesting aspect of this approach is that it exploits

the environment to enable communication among coordinated

entities. In our scenario, it can be applied to autonomous

vehicles even if they do not know each other and do not have

the capability of communicate directly. For instance, a traffic

jam can be faced (and avoided) by “putting” specific signal

information in the environment.
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C. Distributed Learning

Deep learning [15] is now the most widely adopted

machine-learning model for enabling vehicles to detect pedes-

trians, street lanes and many other features needed to perform

safe autonomous driving [16]. As of now, car manufacturers

are collecting huge amount of data in (mostly) centralized

servers to perform the off-line learning phase; elaborated data

(such as weights and topology of the resulting deep neural

networks) are then offloaded to the autonomous vehicles. We

argue that in the future such model might be further enhanced

with continuous learning networks, in which the experience of

different cars can serve for improving previously stored neural

networks, so to have online distributed refinement of weights

and topologies for continuously evolving networks. Simulated

scenarios already discussed some possible algorithms for these

approaches [17].

D. Field-based Approaches

The metaphor of the physic field has been exploited in

distributed coordination because of its simplicity and ex-

pressiveness [18]. In this kind of approach, the environment

provides one or more location-dependent values that represent

information for the components living in the environment. This

approach has been enforced by distributed tuple spaces in the

SAPERE project [19]. These mechanisms have been success-

fully tested in urban scale crowd steering scenarios [20], which

might be easily adopted for avoiding traffic congestions.

TABLE I
CASE STUDIES AND POSSIBLE APPROACHES

Case study Techniques
Crossings and Turning left Auctions
Parking Auctions
Behavior learning ACO, Distributed learning
Traffic Jam ACO, field-based

E. What Is Missing

From the previous sections, it seems that several tech-

nologies and techniques are available to manage a set of

autonomous vehicles. However, we point out that the real

scenario of autonomous vehicles has not been explored yet,

and can exhibits peculiar issues that have not been faced in

the previous research. In particular, we point out two issues:

(i) there is no comprehensive approach to apply coordination

approaches to the autonomous driving scenario; (ii) there are

no real experiments on applying the mentioned techniques to

physical vehicles. Therefore, to pursue our research objective,

we aim at defining a global approach and at testing the

previously mentioned technology with real vehicles.

Testing on real-vehicles, will then be carried out by two

ways: (i) A first bunch of experiments will be performed by

using scale cars; (ii) next experiments will be performed in a

real area of the city of Modena, called “Smart-area”, which is

going to be equipped by the local administration with sensors,

actuators, and, above all, a connection infrastructure that will

enable the communication among vehicles.

IV. CONCLUSIONS

In this paper we have presented some examples as

motivations to introduce adaptive coordination in autonomous

driving, along with the challenges they introduce. We have

also presented some techniques that can be exploited to enact

adaptive coordination in the considered scenario. From our

consideration, a lack of a comprehensive approach and of

real experiments emerges.
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