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Abstract—This paper presents a method for applying real-
time scheduling techniques to balance the power usage of
electric loads in cyber-physical energy systems. The aim of the
proposed approach is to achieve predictability of the activation
of electric loads to guarantee an upper bound on the peak

electric power consumption.
The contribution of this paper encompasses several aspects.

The relevance of balancing electric loads is discussed, moti-
vating the use of real-time scheduling techniques to achieve
predictability on electric-load management. We introduce the
innovation of modeling the physical system as a set of pe-
riodically activated loads, that can be effectively managed
by adequately adapting traditional real-time system models
and scheduling algorithms, to guarantee an upper bound on
the peak power consumption. For this purpose, we present a
problem formulation based on linear programming, while a
low-complexity heuristic is proposed to limit the complexity of
the optimization process. Simulation results are presented to
assess the performance of proposed methods.

Keywords-Cyber-Physical Energy Systems; Load Balancing;
Real-Time; Modeling; Peak Load

I. INTRODUCTION

Cyber-physical systems (CPSs) represent an emerging

technology that aims to integrate embedded processing

devices to monitor and control physical processes. Cyber-

physical systems are intended to address critical applications

operating in dynamic and uncertain environments, made by

a high number of devices and characterized by complex

relationships among components. Several factors can affect

system operations, such as hardware and software failures,

and partial knowledge of the system operating state. Exam-

ple applications include: automotive, avionics and medical

systems; critical infrastructure management, such as electric

power and water resources; traffic control and safety; ad-

vanced robotics for manufacturing or telemedicine (see [1]

for details on some specific systems).

While the current application design is based on the use of

traditional embedded systems, which emphasizes the com-

putational issues performed by embedded processing units,

cyber-physical systems are more focused on the tight inte-

gration between physical and computational systems. This

paper concentrates the attention on those systems dedicated

to energy management, i.e., Cyber-Physical Energy Systems

(CPESs) [2]. In such systems, the “physical” process is made

by a network of electric devices that are controlled by a

complex set of interconnected embedded systems.

The current technology trend is moving towards the

automatic, distributed and coordinated control of electric

devices. Some examples can be found in home and factory

automation systems [3], large networks of electric cars [4],

and automated energy supply and distribution for town

and city districts organized in smart grids [5]. On the

other hand, the diffusion of compact, flexible and low-cost

embedded systems is making more practical and attractive

the implementation of CPESs, since monitoring and control

actions can be accurately applied on devices composing the

considered physical system. Such embedded systems can be

connected to build large distributed networks, thus being

able to coordinate the actions on large systems.

The limited sources and the growing request of electric

energy, together with the impact of power generation, trans-

portation and usage on the environment and the eco-system,

motivates the research on techniques to optimize the energy

utilization in cyber-physical energy systems.

An “electrical system” can be defined as a set of electrical

devices, or loads. Within the scope of this paper, a load is

characterized by its power consumption, i.e., the maximum

amount of power consumed when the load is active. Loads

can be turned on/off depending on different conditions: the

purpose of the device, the relationship with other devices,

environmental conditions, and time.

Electrical systems may be composed of tens to thousands

loads, where each device (or groups of them, which could

be seen as a single logical device) must be driven in a timely

fashion.

The balancing of energy utilization is fundamental for the

efficient behavior of an electrical system [6], [7]. For this

purpose, specific technical and economical approaches are

used to control the distribution of power usage over time.

One of the most widely adopted methods is the “peak-load

pricing”, which assigns higher prices to larger peak-load

demands [8]. The most recent analysis of this pricing policy



originates from economic research in the 60’s and 70’s.

Peak-load pricing is often used by electricity suppliers and

telephone utilities to enforce a limitation on the peak service

demand, avoiding expensive over-dimensioned distribution

infrastructures associated with high peak demands. In case

of energy distribution, a supplier can only provide a finite

amount of energy. This is due, among other factors, to the

limited number of available sources for energy generation,

or the bounded flow of energy that can be supported by the

distribution infrastructure. Therefore, the price of the service

is raised to discourage the resource usage under peak load

conditions.

Peak load conditions, i.e., the simultaneous request of

large electrical powers by many users, may cause severe

issues such as the disruption of power provision, leading

to technical and economic problems for both suppliers and

users. Moreover, during peak load conditions, the cost of

energy production may unpredictably increase in a short

time frame due to the impossibility of generating enough

energy to satisfy the request of customers. Therefore, energy

providers — that must observe contractual obligations with

their customers to supply electricity at pre-defined fixed

prices — may experience a relevant financial burden. On the

other hand, an adequate management of peak load conditions

is desirable for energy utilities [9], so that an appropriate

load management aiming at achieving predictable load con-

ditions may lead to potential contractual benefits to the user.

As a consequence, both energy providers and consumers

are likely to be interested in load balancing and predictable

energy consumption.

Given the aforementioned technical and economic issues,

an efficient management of peak-load conditions has the

following advantages:

1) the least efficient, i.e., the most expensive, power

plants can be turned off if the peak power demand

is guaranteed to remain under a given threshold;

2) the electric distribution infrastructure can be tailored

for lower peak loads, with less technical issues and

reduced costs;

3) the curve of power usage can be smoother and flat-

ter, allowing the final users to have better pricing

conditions on the free energy market, where pricing

strategies are often driven by the peak-load pricing

policy [8].

This work aims to apply real-time scheduling techniques

to the management of loads in cyber-physical energy sys-

tems. The goal is to balance the total consumed power and

the peak power consumption. The main expected advan-

tage of this approach is to leverage the strong mathemat-

ical background of the real-time scheduling discipline for

modeling and analyzing a physical system. On one hand,

real-time scheduling algorithms can be used to predictably

activate/deactivate electrical devices to guarantee the desired

system features, in terms of timing constraints and energy

consumption. On the other hand, the typical large size

of cyber-physical energy systems will take advantage of

efficient scheduling algorithms and analysis techniques to

determine the system feasibility and properties.

It is worth noting that this paper does not deal with the

architecture or the engineering of a cyber-physical energy

system. The proposed approach must be intended as a

viable modeling technique for the physical energy system,

allowing the development of predictable and robust control

strategies based on real-time scheduling methodologies. To

the best of our knowledge, this is the first work addressing

the application of real-time scheduling techniques to cyber-

physical energy systems in order to balance the consumed

power and to achieve a bound on the peak load. Therefore,

the first part of the paper is dedicated to the description of

the approach and of the potential contributions that real-time

methodologies could bring to properly modeled CPESs.

A. Paper organization

The paper is organized as follows: a detailed explanation

of the analogy between real-time computing systems and

electrical systems is given in Section II, motivating the

proposed approach with examples and possible scenarios.

Section III introduces the system model, under which the

theoretical results of Section IV are derived. Sections V

and VI present, respectively, an optimal and an approximated

method to reduce the peak load. The effectiveness of such

methods is assessed in Section VII by means of simulations.

Finally, Section VIII states our conclusions and outlines

several possible directions for future enhancements of this

work.

II. ELECTRIC LOADS AS REAL-TIME TASKS

This paper introduces the application of real-time analysis

techniques to schedule the activation of electric devices

in electrical networks. For this purpose, an analogy is

established between real-time computing systems and cyber-

physical energy systems.

Real-time scheduling allows managing the execution of

tasks on processors under timing constraints. In more general

terms, real-time scheduling can be seen as the discipline of

allocating resources over time to a set of time-consuming

tasks, so that given timing constraints are satisfied. However,

in this more general formulation, resources may not neces-

sarily be processors or computing devices. In fact, real-time

scheduling techniques are also applied to communication

systems, where real-time algorithms are used to schedule

sets of messages over a communication channel [10]. In

this case, an analogy holds between computing tasks and

messages, as well as between processors and communi-

cation channels. The meaning of “available bandwidth”

changes depending on the particular context, referring to

the channel capacity in communication systems, and to



processor’s computing time in computing systems. Finally,

timing constraints are enforced on the execution times in one

case, and (typically) on message’s end-to-end latency in the

other. In other words, a real-time task must be guaranteed to

terminate its execution before its deadline, while a message

must be delivered to the receiver within the given time limit.

This analogy allows extending to communication networks

many results that have been originally developed for real-

time computing systems, and vice versa. An example is

given by the “real-time calculus” [11], a real-time extension

of the network calculus. The above considerations lead to

the opportunity of profitably applying real-time scheduling

techniques, with suitable adaptations and extensions, to

systems presenting similar analogies.

Electric devices are modeled as periodically activated

tasks, with a bound on the total time that a load can remain

active — thus consuming power — in each period. This

bound recalls the Worst Case Execution Time (WCET) of a

real-time task in computing systems. As for computing tasks,

all the time properties of electric loads (periods, deadlines

and activation time) must be selected according to their

application requirements. Section II-A provides some exam-

ples of timing constraints related to specific electrical loads.

Based on the system model, a priority-based scheduling

algorithm can be applied to selectively activate/deactivate

each device. The goal is to meet the timing constraints of

each load, while guaranteeing an upper bound on the total

instantaneous power consumed by the concurrent activation

of electric components.

In the real-time systems literature, there is active research

on power-aware scheduling strategies to save energy while

achieving timing constraints. Such scheduling policies aim

at reducing the power consumption using special features

of modern electronic hardware, such as Dynamic Voltage

Scaling (DVS) [12], [13]. As in those works, the model

proposed in this paper associates a maximum consumed

power to each electric device. However, some distinctions

can be identified. First of all, we do not aim at directly

reducing the overall energy required by the system. The

objective is, instead, to determine a bound on the peak

power consumption, and to predictably enforce this bound

by scheduling electric devices activations in a timely manner.

Some recent works are addressing the real-time issues

related with some special cases of cyber-physical energy

systems. In [14], the authors propose a technique to improve

the efficiency of batteries charge/discharge, for electric ve-

hicles. However, this work is limited to batteries, while our

approach is oriented at establishing a general framework for

managing energy systems in a real-time manner. In [15],

the authors aim at finding optimal schedules for microCHP

(Combined Heat and Power) systems. The approach is based

on global optimization through an Integer Linear Program-

ming formulation of the problem. However, the application

of the proposed method is strictly limited to offline optimiza-

tion, while our technique can be applied online. Moreover,

we introduce the novelty of modeling electric loads using

real-time parameters, to allow the use of real-time techniques

for scheduling the activation of loads. Finally, in [16] the

authors describe a cyber-physical energy system as a set

of components modeled as dynamical systems. While the

modeling of electrical devices is more advanced than the

one proposed in this paper (refined modeling is subject of

future research in our framework), the goal is not related

with achieving peak load constraints and, again, no real-time

issues are considered.

A. Load modeling

This section provides informal examples of electric de-

vices and applications that are suitable for being integrated

in a real-time management system. Their relevant character-

istics are described, outlining a possible modeling of their

timing properties.

Household appliances: Typical household devices like

ovens, washing machines, dryers, dishwashers, have each

a peculiar duty cycle. The tighter the timing requirements

— i.e., the closer the deadline to the maximum activation

time — the more constraints are imposed on the scheduling

algorithm, reducing the chances of finding a lower peak load.

Anyway, a certain slack is usually available in the working

cycles of household appliances, and programmable devices

are already used to control the activation of electric loads

depending on the energy prices in the stock market.As an

example, these devices are used to control washing machines

in domestic environments, where postponing by a few hours

the time at which the laundry is ready does not cause any

problem.

Lighting.: Consider the corridor lights of a building,

that may need to be turned on in the evening, for example

at 8:30pm, and turned off in the morning at 7:00am. In this

case, no service interruption can be tolerated. During the

active period, the total power consumption is the sum of

power consumed by each lighting device, while in the rest

of the time, the power consumption is negligible.

In this simple case, the load has a period of 24h, an

active time of 10:30h, and a relative deadline equal to the

active time. In this way, the load must be continuously

scheduled at the beginning of the period, without allowing

any “preemption” while the lights are switched on, as is

expected from a lighting system. Clearly, this requirement

has a negative impact on the level of concurrency of load ac-

tivations. Electrical loads of this kind (i.e., with no activation

slack) will lead to an increase in the number of concurrently

active loads. Since no slack is available in the activation

cycle, there is no way of reducing the impact of these loads

on the resulting peak load. However, it is still possible to

control the schedule of less interactive loads, so that they be

activated when there is a smaller energy requirement.



III. SYSTEM MODEL

We consider a system composed of a set Λ =
{λ1, . . . , λn} of n independent electric loads that request to

be turned on and off (or activated/deactivated), depending

on their specific timing requirements. A load is said to be

active when it is turned on, inactive otherwise.

The j-th request for activating the load λi happens at time

ri,j . The i-th load λi is modeled by the tuple (Ti, Ci, Pi),
where

• Ti is the minimum separation between two consecutive

requests of activation ri,j , ri,j+1 (as in the sporadic

model for real-time computing tasks [17]). Hence,

∀λi, ∀j ri,j+1 ≥ ri,j + Ti (1)

• Ci is the longest time the load λi can be active between

two consecutive requests;

• Pi is the nominal power consumed by the load λi

during its active time.

We define the utilization of λi as Ui = Ci/Ti. The total

utilization of Λ is U =
∑n

i=1 Ui.

The load activity is controlled by a load scheduler that

decides when each load is activated/deactivated. Formally,

the scheduler assigns to each load λi a schedule that is

modeled by the function si(t)

si(t) =

{

1 λi is active at t

0 otherwise
. (2)

The schedule of loads is then given by S = {s1, . . . , sn}.

A schedule S is said to be valid if it assigns to each

load λi an amount of activity time equal or larger than Ci

between two consecutive requests. Formally,

∀λi, ∀j

∫ ri,j+1

ri,j

si(t) dt ≥ Ci (3)

Notice that the equality will suffice in Equation 3 if tradi-

tional scheduling algorithms (such as EDF or RM) are used

to generate the schedule.

For a given schedule S, the actual power consumed by

the load λi at time t is

pi(t) = Pi si(t). (4)

The overall actual power consumption p(t) at time t is

p(t) =

n
∑

i=1

pi(t). (5)

Finally, we define the peak load P of a set of loads Λ
as the maximum instantaneous power consumption over the

system lifetime

P = max
t≥0

p(t). (6)

Given these hypothesis, we can formulate our problem as

follows

minimize P

subject to S being a valid schedule
(7)

Unfortunately, solving the problem in this wide formula-

tion is very hard. In the next sections, we will show how to

exploit well known real-time scheduling algorithms to find

a suitable solution for this problem.

IV. RT SCHEDULING ALGORITHM FOR ELECTRIC LOADS

We propose to use classic real-time scheduling algorithms,

such as Rate Monotonic (RM) or Earliest Deadline First

(EDF) [18], to schedule the loads in Λ. Specifically, each

load can be considered as a task with computation time

Ci and period (equal to the deadline) Ti. For example,

when U ≤ 1, the EDF scheduling algorithm can build a

schedule S with the minimum possible peak power, that is

P = maxi Pi.

However, if U > 1 some loads must be contemporarily

activated, leading to a possibly larger peak power consump-

tion P . Hence, we suggest to partition the Λ load set into

m disjoint sets Λj , j = 1 . . . , m, that we call scheduling

groups. Scheduling groups are determined such that their

total utilization, defined as

U(Λj) =
∑

λi∈Λj

Ui,

is smaller than or equal to 1. This property enables EDF

to find a valid schedule within each scheduling group.

The maximum peak in this case happens when the loads

with the highest powers are contemporarily activated in all

the scheduling groups. Notice that Equation (5), which is

evaluated over all loads λi, 1 ≤ i ≤ n, could also be

evaluated over all scheduling groups Λi, 1 ≤ i ≤ m, since in

each scheduling group only one load is active at any given

time t. An upper bound P ∗ on the peak load can be found

considering the contemporary activation on all groups of the

load with the largest power. Therefore,

P ∗ =
∑

Λj

max
λi∈Λj

pi. (8)

It is worth noting that P ∗ represents an upper bound, but

it is not tight, i.e., it could be overly pessimistic.

In this section, we provide some theoretical results related

to the considered system model, and propose strategies to

produce a valid schedule of a given set of loads, with the goal

of reducing and bounding the peak load. We will present

two scheduling algorithms with different complexities. One

algorithm produces a smaller peak load, although it requires

a large computational effort; the second one is simpler,

although it could result in a larger peak load.

Before presenting the algorithms, we first state the fol-

lowing theoretical result on the minimum achievable peak

load.



Theorem 1: For any load set Λ, no valid schedule can

produce a peak load lower than

Pmin =
∑

λi∈Λ

PiUi. (9)

Proof: Assume, by contradiction, a load allocation for

Λ grants a peak load P < Pmin. Let H be the least common

multiple of all load periods T1, . . . , Tn. The overall energy

consumed by Λ over H when all loads are synchronously

activated at time t = 0, and then periodically activated as

soon as possible, is

n
∑

i=1

H

Ti

CiPi = H

n
∑

i=1

UiPi.

Since the peak load is assumed to be equal to P , the

overall energy consumed by Λ in H can not be greater than

PH . Therefore,

H
n

∑

i=1

UiPi ≤ PH,

and,
n

∑

i=1

UiPi ≤ P.

Using Equation (9), we get

Pmin ≤ P.

leading to a contradiction.

V. LINEAR PROGRAMMING FORMULATION

The problem of partitioning the set of loads as introduced

in Section III, can be formalized as a level packing prob-

lem [19]. In level packing, a strip must accommodate a set

of rectangles such that the total height is minimized. The

peculiarity of level packing is that rectangles are partitioned

in horizontal levels of decreasing height from the bottom to

the top. In each level, items are packed from left to right

by decreasing height, similarly to the arrangement of books

within a bookshelf (see Figure 1).

Since the height of a level is equal to the leftmost

rectangle, such a rectangle is said to initialize the level. The

advantage of level packing is that a two-dimensional prob-

lem is transformed into a pair of one-dimensional problems,

namely the packing of levels, and the packing of rectangles

into levels.

In this paper, the level packing problem is solved using a

Binary Integer Linear Programming (BILP) technique after

a proper modeling of the problem, which brings to the

introduction of suitable optimization variables.

Each load is modeled as a rectangle whose height corre-

sponds to the power consumption pi and width is determined

by its utilization ui. Without loss of generality, all loads

are assumed to be sorted by decreasing power, namely

1

2

3

4

5

6

Figure 1. Example of level packing.

pi ≥ pj ⇔ i ≤ j. In the worst case, there are n possible

levels, one for each rectangle as the starting item. A set of

n variables yi ∈ {0, 1} defines level initialization. There

is one such variable for each load, being yi = 1 if item i
initializes level i, yi = 0 otherwise. A level is labelled by

the index of the item initializing it. The variables xi,j with

i ∈ {1, . . . , n − 1} and j > i define the packing of item j
when it does not initialize a level. The value xi,j = 1 is set

if item j is packed in level i, xi,j = 0 otherwise.

For example, in the case depicted in Figure 1, it holds

y1 = y3 = 1, because only items 1 and 3 initialize a level,

while yi = 0 is set for all remaining items. The allocation

of other rectangles to their respective levels is encoded in

x1,2 = x1,4 = x1,6 = 1 and x3,5 = 1, with all other values

being xi,j = 0.

First of all, since each load can either initialize one level

or it can be one of the rectangles following the initializer,

the following constraint must hold:

yj +

j−1
∑

i=1

xi,j = 1 ∀j = 1, . . . , n (10)

Notice that, thanks to the ordering of the rectangles by

decreasing height, item j can be allocated as one of the

non-initializing items only in the levels from 1 to j − 1.

A second constraint arises from the maximum width of

the resource. The value W is defined to be equal to the

utilization upper bound that guarantees the schedulability of

a load set. For example, if Earliest Deadline First (EDF)

with implicit deadlines is used, then we set W = 1. Since

the horizontal dimension is interpreted as utilization, then

each level can not exceed the width W of the rectangle.

Therefore, it holds

n
∑

j=i+1

uj xi,j ≤ (W − ui) yi ∀i = 1, . . . , n − 1 (11)

To enforce the consistency of the contraint given by

Equation 11, notice that when level i does not exist (yi = 0),



then all xi,j are forced to 0 as well. The constraint specified

by Equation 11 enforces the utilization based schedulability

test. Therefore, it makes the proposed solution suitable for

scheduling algorithms where feasibility can be evaluated

by an utilization-based test. However, in [20], the authors

propose the description of the EDF scheduling algorithm,

where deadlines are less than periods, using a set of linear

inequalities that could be used within the BILP framework.

Therefore, the approach proposed in this paper can be easily

extended to such system model.

The goal of the optimization approach based on BILP is

to minimize the sum of the peak powers on each group, that

is

minimize

n
∑

i=1

pi yi (12)

The evaluation of the number of variables and constraints

provides an estimate the problem complexity. In the pro-

posed scheme, the number of yi variables is n, because

all rectangles may initialize one level. The xi,j variables

are
n(n−1)

2 . Hence, the total number of variables is
n(n+1)

2 .

Moreover, by counting the number of inequalities in Equa-

tions (10) and (11), we find that the number of constraints

is 2n − 1.

VI. LOAD BALANCING HEURISTIC

This section introduce a heuristic algorithm to address

the problem of generating scheduling groups. Algorithm 1

shows the pseudo-code of the proposed method. The key

point of the algorithm consists in sorting the global set of

loads Λ in a descending order with respect to powers, such

as λi < λj ⇔ pi > pj . The algorithm is essentially a first-

fit bin-packing algorithm applied to the ordered set of loads.

The λi load is inserted into the first scheduling group when

the schedulability of the group is feasible. Otherwise, a new

scheduling group is created and the current load is inserted

into the newly created group.

The proposed technique recalls the RM-FFDU (Rate

Monotonic First-Fit Decreasing Utilization) partitioning

scheme for scheduling fixed priority real-time tasks on a

multi-processor system [21], where bin-packing techniques

are used to allocate tasks on processors. However, the men-

tioned previous work does not address the optimization of

the total power consumption. Moreover, the key distinction

is that in our method the ordering is made with respect to

the value of load’s consumed power, and utilization is not

considered for this purpose.

Since no specific scheduling algorithm is assumed within

each scheduling group, the feasibility test to be performed in

Algorithm 1 is not specified, being dependent on the adopted

scheduling policy. The complexity of the proposed method

is therefore O(α · n2), where α represents the complexity

of the feasibility test adopted. As an example, when using

EDF with the associated utilization-based feasibility test, the

complexity is O(n3).

Algorithm 1 The pseudo-code of the load balancing heuris-

tic.
1: sort Λ in decreasing order of power

2: Λ1 . . . Λm are the scheduling groups

3: m = 1 is the initial number of scheduling groups

4: for all λi ∈ Λ do

5: for j = 1 to m do

6: if λi is schedulable in Λj then

7: add λi to Λj

8: goto end-loop

9: end if

10: end for

11: create a new scheduling group Λm+1

12: add λi to Λm+1

13: m = m + 1
14: :end-loop

15: end for

VII. EXPERIMENTAL ASSESSMENT

This section reports some results obtained by generating

random electric loads while changing some of the most rel-

evant parameters. The goal is to investigate, under different

circumstances, the reduction of the peak load achieved both

by solving the optimization problem and using the heuristic

approach.

The peak load achievable using the proposed schemes is

compared with the worst possible case where all the loads

are active at the same time:

Pmax =

n
∑

i=1

pi.

The parameters that have been taken into account in the

experiments are: the total number of loads n, the total

utilization of the set of loads U , and the range for the

power assigned to the loads. Given those parameters, the

value of each load is randomly generated using the algorithm

UUniFast presented in [22].

Figure 2 shows the efficiency of different approaches with

respect to Pmax, as a function of the ratio between the total

utilization U and the number of loads n. The efficiency η is

calculated as

η =
Pmax − Pmeth

Pmax
· 100

where Pmeth represents the peak load achieved by the given

method: lower bound, LP and heuristic refer, respectively,

to the peak load obtained from Theorem 1, the method of

Section V and the approximated approach of Algorithm 1.

The value of the peak load used to calculate the efficiency is

an aggregated value obtained by averaging the outcome of

thousands of simulation runs. The number of loads assumes

values in the range [2, 30], while the total utilization ranges
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Figure 2. Efficiency of different approaches as a function of the average
utilization.

in the interval [2, 18]. The nominal power of each load

is randomly selected in the range [20, 2000], which is a

reasonable range for typical household appliances.

The results of Figure 2 show that for lower values of

the U/n ratio, i.e., having a high number of loads and a

small total utilization, the proposed methods allow reducing

the peak load up to more than 90% with respect to Pmax.

Therefore, the explicit control on load activations brings to

a remarkable improvement in comparison to the absence of

control actions. When the U/n ratio tends to 1, the benefits

of using a scheduling approach disappear. This is due to the

fact that, when U tends to n, the load generation algorithm

presented in [22] generates an increasing number of loads

having Ui = 1 in order to obtain the desired total utilization.

In this situation, the loads cannot be efficiently aggregated

into scheduling groups, so that each created scheduling

group contains just a few loads (only one load in the worst

case). Therefore, the number of scheduling groups tends to

n and the peak load achievable by all methods converges to

the maximum possible peak load Pmax, leading to η → 0.

Notice that when U ≥ n, it holds η = 0.

Figure 3 shows the average peak load obtained by the

different techniques as a function of the number of loads

n when the total utilization is constant (U = 10). It can

be noticed that, when U ≤ 10, the peak load achieved by

the optimized methods can not be better than Pmax for the

same reason above: every load λi is generated with Ui = 1,

and thus there is no opportunity to apply the scheduling

of loads since each scheduling group contains exactly one

load. When U > 10, the optimized methods guarantee an

improvement that increases with n, accordingly with the

results presented in Figure 2. Moreover, Figure 3 shows that

the peak load achieved by the heuristic method is very close

to the peak load guaranteed by the Linear Programming

formulation which, in turn, is rather close to the lower bound
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Figure 3. Average peak load obtained by the different techniques as a
function of the number of loads n, with U = 10.
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Figure 4. Average peak load obtained by the heuristic method as a function
of the maximum possible power for each load; we considered n = 100,
U = 50 and the minimum possible power equal to 10.

Pmin imposed by Theorem 1. This characteristic behavior

has been steadily detected throughout all experiments.

Finally, Figure 4 shows the average peak load obtained by

the heuristic method as a function of the maximum possible

power for each load. In this experiment we considered n =
100, U = 50 and the minimum possible power equal to 10.

Similarly to the previous results, a noticeable decrease of the

peak load is achieved by the heuristic with respect to Pmax.

This improvement is independent from the range in which

the power is selected for each load. Moreover, the solution

found by the heuristic is relatively close to the lower bound

Pmin.

VIII. CONCLUSIONS AND FUTURE WORKS

This paper presented a methodology for modeling the

physical system of a cyber-physical energy system as peri-

odic activities that can be scheduled by adapting traditional



real-time scheduling algorithms. The goal of the proposed

approach is to limit the peak of power consumption, which is

a desirable feature for both the user and the energy provider.

To the best of our knowledge, this is the first attempt

of using real-time scheduling techniques to organize the

activation of electric loads in a cyber-physical energy sys-

tem. In this paper, a number of simplifying assumptions

have been made, such as considering periodic activations

only, time-invariant load states, etc. Several improvements

and refinements to the proposed model are thus possible:

accounting for event-driven (aperiodic) load activations; an

optimal scheduling strategy that would consider the in-

teraction among loads of different groups (i.e., a global

scheduling of loads); more accurate modeling of specific

devices, considering different working modes, i.e. with dif-

ferent power consumption (full power, power saving mode,

standby, etc.), time-varying load states, or accounting for

the cost of “context switches”, since switching on and off

an electric motor has a cost that, in the long term, may

shorten its life cycle. All those topics will be subject of

future research.
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