SiGAMMA: Server based integrated GPU Arbitration
Mechanism for Memory Accesses

Nicola Capodieci, Roberto Cavicchioli, Paolo Valente and Marko Bertogna
University of Modena and Reggio Emilia, Department of Physics, Informatics and Mathematics, Modena, Italy
name.surname(@unimore.it

ABSTRACT

In embedded systems, CPUs and GPUs typically share main mem-
ory. The resulting memory contention may significantly inflate
the duration of CPU tasks in a hard-to-predict way. Despite ini-
tial solutions have been devised to control this undesired inflation,
these approaches do not consider the interference due to memory-
intensive components in COTS embedded systems like integrated
Graphical Processing Units. Dealing with this kind of interference
might require custom-made hardware components that are not inte-
grated in off-the-shelf platforms. We address these important issues
by proposing a memory-arbitration mechanism, SIGAMMA (SiT'),
for eliminating the interference on CPU tasks caused by conflicting
memory requests from the GPU. Tasks on the CPU are assumed to
comply with a prefetch-based execution model (PREM) proposed
in the real-time literature, while memory accesses from the GPU
are arbitrated through a predictable mechanism that avoids con-
tention. Our experiments show that SiT’ proves to be very effective
in guaranteeing almost null inflation to memory phases of CPU
tasks, while at the same time avoiding excessive starvation of GPU
tasks.

CCS CONCEPTS

« Computer systems organization — Real-time system ar-
chitecture; Single instruction, multiple data; Embedded software;
Multicore architectures;
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1 INTRODUCTION

GP-GPU (General Purpose GPU) computing is a very effective
way to perform embarrassingly parallel computations in embedded
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devices, obtaining impressive performance at a limited power con-
sumption [18]. Such computations are described through different
APIs (Application Programming Interfaces) such as OpenCL, CUDA,
DirectCompute, etc. These APIs assume a host initiates the com-
putation and offloads parallel workload (i.e., computing kernels)
to the GPU (also called device). As an example, see Figure 1, the
CUDA architecture relies on a plurality of engines: the Execution
Engine (EE) for computation and the Copy Engine (CE) for high
throughput DMA transfers.

The Execution Engine reaches a high level of SIMD parallelism
by exploiting hundreds of CUDA cores per Streaming Multiproces-
sor (SM). A hardware scheduler dispatches groups of 32 threads in
lockstep to CUDA cores (these are called warps in CUDA terminol-
ogy). In their turn, warps are grouped into blocks. The programmer
can define a launch configuration for a CUDA offload (CUDA kernel
invocation) by defining number of blocks and size of each block
in terms of threads. Launch configurations can be logically spa-
tially organized in three dimensions, and this is referred as launch
grid. The CUDA kernel invocation configuration and respective
launch grid determines how data to compute is accessed in terms
of memory access patterns.

Both EE and CE, as well as the host system, may perform mem-
ory operations. On one side, EE cores that are not able to find the
required data in local caches must access off-chip DRAM. On the
other side, a CE can be used to perform copies of buffers from host
visible memory to an area that is only visible to the GPU, or vicev-
ersa. When CPU and GPU have physically separated memories,
such as in discrete GPU configurations, the memory contention
between host and device is limited to DMA transfers through PCle
buses. On the other hand, in integrated Graphical Processing Units
(iGPUs), CPU and GPU share the same DRAM, introducing a con-
tention point that may affect the predictability of the system. In
integrated solutions, contention happens on system DRAM, as GPU
related DMA transfers (that still cause data movements in GPU
L2 caches), do not affect data located in the CPU complex private
caches (see Figure 1).

In integrated System-on-Chips (SoC), safety-critical tasks with
tight deadlines are typically executed at the host side, offloading
parallel kernels with a lower criticality to the GPU. Thus, memory
contention may represent a significant threat for predictability and
timing analysis of safety-critical CPU tasks. Concurrent memory
accesses by CPU cores and other memory clients often undergo
undisclosed, or non-priority-driven, arbitration policies at the mem-
ory controller level. The problem is magnified if the considered
SoC features a high performance GPU able to saturate the avail-
able memory bandwidth. As will be shown in our experiments,
the worst-case execution time of a real-time task at the host-side
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Figure 1: CUDA model and integrated GPU architecture. Fo-
cus on contention points and GPU engines

may increase up to 5 times due to the concurrent execution of a
memory-intensive GPU application in modern integrated devices.

Such a significant latency increase motivates the need for a
proper arbitration mechanism of memory accesses between host
and device. In this paper, we present SiIGAMMA (transl. SiT'), a
server-based mechanism that acts as a memory arbiter between
CPU and GPU, moderating the penalties due to the concurrent
memory accesses by GPU engines. CPU tasks are assumed to be
compliant with a predictable execution model (PREM) that separates
memory phases from purely computation phases, as explained in
[17]. Such an execution model allows predictably bounding the
delays due to the concurrent access to shared memory resources by
real-time tasks in multi-core environments. Variants of this model
are adopted at industrial level for automotive [13] and avionic [9]
applications to decouple computation and communication phases
of critical tasks and schedule them in a predictable way to avoid
contention on shared resources.

While being inspired by the above mentioned memory arbitra-
tion mechanisms, SiI' presents a set of distinguishing features:

- It uses a dynamic, event-based approach that allows for a better
utilization of the memory bandwidth also for dynamic task sets.

- It does not rely on hardware counters, that, depending on the
SoC implementation, may be too coarse grained to be used in real-
time settings, especially for general-purpose embedded devices.

- It allows throttling GPU-side activities to limit their memory
interference in heterogeneous SoCs using a novel and flexible mech-
anism, that is applicable also to closed-source architectures in which
the possibility of modifying drivers is extremely limited.

The combination of these features will allow making the CPU-
side memory request more predictable, without overly affecting
performance at GPU side, as will be detailed in our experiments.

The paper is organized as follows. In section 2, we present a small
survey of the literature regarding memory arbitration mechanisms
in embedded devices and GPU arbitration strategies. In section
3, we provide a complete description of the boards used in our
experiments, and a measure of the impact of memory-intensive
GPU applications on the duration of CPU tasks. Section 4 formally
presents Sil'. Experiments and results are detailed in section 5. The
limitations of our approach are discussed in section 6. Conclusive
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remarks and discussion regarding how to extend the presented
research are included in section 7.

2 RELATED WORK

Related work covers mainly two topics: GPU scheduling and mem-
ory arbitration strategies. For the first topic, we provide a summary
of the state-of-the-art regarding real-time scheduling on GPU, and
existing mechanisms for preemption control at the GPU side. This
will allow placing our GPU-side throttling mechanism within the
existing literature. For the second topic, we detail existing works
focusing on predictable memory-centric scheduling policies and
execution models.

2.1 GPU Scheduling

The amount of literature regarding GPU scheduling is not as large
as the contributions available for CPU or I/O scheduling. Kato et al.
proposed TimeGraph [15], a real-time GPU scheduler that schedules
GPU tasks characterized by priority levels. This is done by modi-
fying an open-source GPU driver and monitoring the commands
at driver level. Unfortunately, accessing GPU drivers is not always
possible. For example, the NVIDIA based boards we adopted in
our experiments rely on closed-source drivers, with a much better
performance than competing open source solutions.

In a more recent publication, Schnitzer et al. [20] proposed a
Reservation-based scheduling mechanism applied to GPU tasks,
that still relies on open source GPU drivers. The goal is to schedule
3D-graphics tasks of an automotive application so that the real-time
constraints are satisfied. The reservation-based approach proved to
be very effective towards the GPU model in which the underlying
assumption is the impossibility to preempt. Lower priority tasks are
scheduled only if there is sufficient time to schedule higher priority
GPU jobs before their deadline. These approaches, while obtaining
good results in meeting deadlines and achieving predictability from
the GPU perspective, have not considered the effects of interference
operated by GPU tasks on CPU threads in systems that share the
same DRAM.

Elliot at al. in [10] proposed a different model, in which GPU
engines are seen as mutually-exclusive resources that can be ac-
cessed only by given real-time locking protocols. Based on this
assumption, they developed GPUSync, a software framework for
GPU management in multi-core real-time systems. The target is
again obtaining real-time compliance from the GPU side, without
considering the memory interference to the CPU. A limitation that
is shared by all the previous approaches is that the GPU is always
considered as a non-preemptable resource, reducing the scheduling
strategies that can be applied in such scenarios. This may be an
over-constraining assumption, since preemption of a CUDA kernel
can be achieved by splitting a single kernel invocation into many
different ones [4, 26]. While this might lead to a better control over
the scheduled blocks (as we are able to take different scheduling de-
cisions between kernel invocations), this solution adds a significant
overhead at the CPU side.

The Persistent Thread programming model [12] is another at-
tempt to “hijack” the undisclosed GPU scheduling policies by batch-
ing many kernel calls into a single invocation to then arbitrate the
execution of blocks of GPU threads with user-defined scheduling
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and synchronization policies [23]. Reducing driver overhead, both
performance and GPU utilization are proved to be significantly
better than with traditional offloading models for various applica-
tions [6, 7]. Despite these performance improvements, persistent
threads leave even less control to the CPU to preempt GPU activi-
ties. Moreover, transitioning to persistent threads implies changes
at kernel code level that might be not so trivial to implement. In this
respect, our SiI' approach implies only minor host code refactoring,
leaving GPU kernels untouched. By carefully reverse engineering
the CUDA model, we were able to achieve user-space preemption
of unmodified CUDA kernels in order to enforce our memory ar-
bitration mechanism. This mechanism only requires the platform
to support CUDA priority streams, allowing a fine-grained control
over previously scheduled GPU warps, limiting the contention due
to memory-intensive kernels for real-time applications.

2.2 Memory access arbitration

A pioneering work targeting the memory contention problem in
embedded multi-core systems is presented by Pellizzoni et al. in [17].
In this work, the Predictable Execution Model (PREM) is proposed,
along with a set of compiler extensions able to reformat existing
application code dividing it into the following phases:

- Memory phase: a pre-fetching phase in which SPMs (Scratch
Pad Memories) and/or CPU caches are loaded with the necessary
data to be used in the following phase.

- Execution phase: the phase in which the CPU computes data
pre-fetched in the local memory during the previous phase.

- Compatible intervals: phases accessing external devices (e.g.,
I/O storage), or executing code that cannot be reformatted in a
PREM fashion.

This phase distinction operated on PREM-ized applications al-
lows execution phases to compute pre-fetched data without resort-
ing to main memory, while another client may access main memory
without being interfered. In other words, this programming model
can be easily coupled with proper scheduling techniques in order to
prevent simultaneous memory phases coming from different cores
to overlap in time, hence drastically reducing, or even eliminating,
the contention on shared memory. A CPU multi-core extension of
the PREM model and further refinements of the concept of memory-
centric scheduling is presented in [3].

A more event-based approach has been recently proposed in
bwlock [24], protecting critical memory-intensive sections of real-
time applications by means of specifically designed system calls
implemented through a kernel module. The authors show a better
isolation and an improved performance with respect to PREM-based
approaches.

While all of these works form the basis of our research, the
PREM model was never applied in order to moderate the interfer-
ence coming from a high performance iGPU. Since the impact of
unregulated GPU-CPU memory accesses may be dramatic, as will
be shown in section 3, this paper addresses this shortcoming. Our
proposed server-based mechanism relies on having CPU real-time
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tasks complying with the PREM model, so to have distinct mem-
ory and execution phases. Such phases are previously estimated in
terms of Worst Case Execution Time (WCET)!.

A different way to arbitrate memory bandwidth between differ-
ent cores in multi-core CPUs is given by the MEMGUARD mecha-
nism presented in [25]. MEMGUARD is a kernel module that keeps
track of the memory usage of cores or threads by using hardware
performance counters. When a previously specified threshold of
LLC (Last Level Cache) misses is reached, the module will spin the
misbehaving core by forcing the scheduling of a higher priority
process, which could be accomplished with a SCHED_FIFO process,
whose priority is set to 99. This will prevent any other access to cen-
tral memory for a given time window. We implemented the same
kind of mechanism with two fundamental differences: (i) we do not
use hardware counters, as they are known to provide unreliable
measurements in many commodity SoCs [22]; and (ii) we spin a
CUDA kernel on the GPU instead of a CPU thread.

3 MEASURING GPU TO CPU INTERFERENCE

In this section, we provide a complete description of the boards used
in our experiments (NVIDIA TX1 and TK1), to then characterize
them in terms of GPU-to-CPU memory interference. We are mainly
interested in measuring the increase of memory access latencies of
CPU tasks due to GPU activity.

3.1 Boards description

NVIDIA TK1 [1] and TX1 [2] are hybrid SoCs. Tegra K1 consists of
a quad-core 2.3GHz ARM Cortex-A15 CPU (32kb I-cache + 32kb
D-cache L1 per core, 2MB L2 cache common to all cores). An A15
shadow-core for battery-saving features is also present. The iGPU is
a Kepler generation “GK20a" with 192 CUDA cores grouped in 1 SM
(Streaming Multiprocessor). The development board is equipped
with 2GB of LPDDR3 SDRAM working at 933MHz and 16GB of fast
eMMC.

Tegra X1 consists of a quad-core 1.73GHz ARMvS cluster with
Cortex-A57 CPU (80kb L1 per core, 2MB L2 cache common to all
cores) coupled with a low-power quad-core A53 CPU cluster and a
Maxwell generation iGPU “GM20b" with 256 CUDA cores grouped
in 2 SMs. The board features 4GB of LPDDR4 SDRAM and 16GB of
eMMC.

The compute capability of a CUDA device is represented by a
version number, also sometimes called “SM version". This version
number identifies the features supported by the GPU hardware and
is used by applications at runtime to determine which hardware
features and/or instructions are available to the CUDA task. In
our work, SM capability determines the support of discrete CUDA
stream priorities, which is a necessary feature we exploit for en-
abling CUDA kernel pre-emption (see section 4.3). TK1 SM has
capability 3.2 but it just supports a single priority value for its
streams. TX1 SM has capability 5.3 and it supports two discrete
stream priority levels (HIGH and LOW).

!We will use the term WCET also to denote the maximum time of memory phases,
even if CPU execution is not involved.
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Table 1: Platform-specific memory bandwidth [GB/s]

TK1 TX1

CPUBW | SYSBW | CE BW

CPUBW | SYSBW | CE BW

3.5 14.9 6/12 4.5 25.6 10/20

3.2 GPU impact on latencies

In this section, we measure the impact of GPU interference w.r.t.
CPU tasks in terms of latency increases when accessing system
DRAM. We define a baseline scenario in which a single core sequen-
tially accesses differently sized working sets and infer the average
accessing time for a single memory access (i.e., the time it takes to
access a word). Then, we repeat the same measurements co-running
on the GPU an interfering CUDA application that accesses memory
according to different paradigms:

- Executing a copy kernel that copies element-wise data between
two buffers (CUDA kernel);

- Executing a copy kernel involving unified memory located
buffers (CUDA UVM);

- Copying a buffer by means of the copy engine (CUDA memcpy);
and

- Zeroing a buffer (using cudaMemset).

Table 1 shows the bandwidth for sequential reading operations of
a single CPU core (CPU BW), the total memory bandwidth available
by the specific DRAM configuration (SYS BW) and the bandwidth
consumption of the GPU Copy Engine (CE BW). This latter value
is split into two numbers: the first one refers to host to device
copies (H2D) (i.e., the bandwidth used when copying a memory
region from a host visible region to a GPU visible area, or viceversa),
while the second one refers to the bandwidth used by the GPU when
performing a copy (memcpy) between GPU-visible memory regions
(D2D).

Figures 2a and 2b show the latency increase experienced by the
CPU when interfered by GPU activities. The vertical lines corre-
spond to the size of L1 and L2 caches. For working sizes larger
than the last level cache (hence, accessing DRAM), the GPU may
increase the CPU-side memory access delays by up to 300% for the
TX1 board, and up to almost 500% for the TK1. A similar trend was
noticed in several other experiments we conducted to highlight the
latencies experienced at host and GPU side for different interfering
patterns and alternative heterogeneous platforms. More accurate
discussions and latency measurements have been published in [8].
Such an impressive slowdown motivated our research for more pre-
dictable and efficient mechanisms to arbitrate the access to shared
memory resources in high-performance heterogeneous platforms.

4 THE SIGAMMA APPROACH

In this section, we introduce SiT', a mechanism to protect latency-
critical CPU tasks from GPU-side memory interference. To better
explain the underlying arbitration mechanism, we initially assume
the time-critical application running on the CPU be composed of a
single periodic PREM task. We will later show how the mechanism
can be easily extended to work with multiple latency-sensitive tasks
in section 6.

The PREM task is composed of three phases: load, compute and
unload. During the first phase, the task loads all data required for the
subsequent computation phase in LLC. The next phase computes
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the pre-fetched data from the local memory, without needing to
access system DRAM. In the last phase, elaborated data is flushed
into main memory and/or copied in output buffers. Critical tasks
having working set sizes larger than the LLC may be conveniently
split into multiple PREM-ized iterations.

Our mechanism will assure no interference is experienced by
the critical task in the memory phases, allowing it to exploit its
maximum bandwidth. Moreover, the absence of DRAM interference
allows fully exploiting burst transfer features at memory controller
level when accessing sequential chunks of data. Finally, the num-
ber of row buffer misses at memory bank level are significantly
decreased due to the absence of concurrent memory requests.

On the GPU side, we define a GPU thread as a thread running
on the CPU responsible for sending GPU jobs related commands to
the GPU driver using CUDA as API, not a thread executing on the
GPU. The CUDA application will use either the Copy Engine or the
Execution Engine. A common programming paradigm in CUDA
is to copy data from host visible region to device-only memory
regions (H2D copy) using the Copy Engine; elaborate the data on
the Execution Engine through a kernel invocation; and read back
the computed data, copying it back from the device-only accessible
region to host visible memory (D2H). One can mistakenly assume
this execution model be PREM compliant. Unfortunately, this is
not the case, since a CUDA kernel may often access shared DRAM
even during its execution phase.

In embedded systems, this programming paradigm implies du-
plicating the memory consumed for GPU offloads. Still, there are
several reasons why using this model instead of leveraging the
coherency mechanisms of CPU/GPU caches:

- Unified Virtual Memory (UVM) [19]) and similar CUDA based
coherency mechanisms are not easy to profile and analyze in such
closed and proprietary environments, preventing their adoption
for real-time applications.

- Data transfer is a key aspect that needs to be explicitly consid-
ered by a programmer for maximizing the performance of GP-GPU
computing applications [16]. Leaving the management of mem-
ory transfers to coherency mechanisms does not lead to better
performance?.

- CUDA is an API that exposes the same set of functions both to
embedded iGPUs or to their high-end discrete counterpart. Porting
a desktop application onto a mobile/embedded platform without
significant code refactoring would then imply using a copy-based
approach, as usually done for discrete GPU applications.

Having clarified the considered task model for CPU and GPU
workloads, the next subsections describe the approach proposed to
predictably limit the potential memory interference of uncoordi-
nated CPU/GPU activities.

4.1 Memory arbitration mechanism

The SiT" approach adopts a memory server that arbitrates the access
to shared DRAM. Any host thread wanting to start a memory or
computation phase needs to first access this server to notify the du-
ration and nature of the following phase, namely, a memory phase
(CPU_MEM), a computation phase (CPU_COM), or no operation

Zhttps://github.com/Sarahild/CudaMemoryExperiments/tree/master/
MemCpyExperiments


https://github.com/Sarahild/CudaMemoryExperiments/tree/master/MemCpyExperiments
https://github.com/Sarahild/CudaMemoryExperiments/tree/master/MemCpyExperiments

SiGAMMA: Server based integrated GPU Arbitration Mechanism for Memory Accesses

Sequential read, GPU interference
600 —_ -

=8~ Alone
—&— CUDA
500 kernel
CuDA
memcpy
w5 400 —&— CUDA
& memset
§‘ 300 - UVM
5]
= —— Cache limit
3
200

100

28 .

0
1000 10000 100000 1000000 10000000

WSS [B]

@)

RTNS ’17, October 4-6, 2017, Grenoble, France

Sequential read, GPU interference

A0 =T ~&— Alone
—8— CUDA
kernel
60 CUDA
memcpy
> —8— CUDA
£ memset
§ 40 —— UVM
] e
E Cache limit
=
20
0
1000 10000 100000 1000000 10000000
WSS 8]

(b)

Figure 2: CPU-GPU interference latencies for NVIDIA Jetson TK1 (a) and TX1 (b). Vertical lines indicate CPU L1 and L2 cache

boundaries and WSS refers to the CPU Working Set Size

(NO_OPER). The first one is used to signal to the server that a
critical CPU thread is asking to exclusively access system DRAM;
the second one informs the server that the CPU is about to undergo
a compute phase and it will not resort to DRAM accesses; the latter
one informs the server that CPU threads PREM iterations are over,
hence releasing any locking privileges for system memory.

The GPU thread has read-only access to the server. Before per-
forming any operation, it contacts the server to monitor the ongo-
ing phase at the CPU side. If the CPU_MEM signal is active, the
server does not allow any GPU operation. In this case, the server
returns the remaining time of the memory phase, after which the
GPU thread will contact the server again. If the host is instead in
CPU_COM state, the server computes the remaining time of the
computation phase, and allows the GPU thread to execute for a
corresponding amount of time.

A graphical description of the protocol is depicted in figure 3,
showing a time window with concurrently executing CPU and GPU
tasks. At time ¢y, the CPU thread acquires the lock for system DRAM
by sending the CPU_MEM signal and the worst-case duration My
of the memory loading phase. At time ¢, the GPU thread wants to
execute a GPU task that might involve the copy or the execution
engine, indicated simply with “GPU activity". The GPU thread
queries the server, which replies with the amount of time the GPU
thread will have to go in sleep mode before querying the server
again. This happens at time ¢, when the CPU goes into CPU_COM
and notifies the server about the length of this phase. This phase
corresponds to the “grace period" in which the GPU thread can
operate any kind of activity (from t; to t3). How this activity is
managed to be bounded within this grace period depends on which
engine is going to be used by the GPU, as will be detailed in the next
paragraph. The time interval between #3 and t4 is locked by the CPU
thread for a consecutive load/unload memory phase, followed by
the second grace period for the GPU until 5. The lock is completely
lifted after t¢, when the CPU thread communicates the NO_OPER
signal, allowing unrestricted execution of the GPU task.

The cost of server communications will be experimentally evalu-
ated in section 5, while further remarks on the impact of this server
mechanism will be provided in section 6.

4.2 Split CUDA memory transfers

The above paragraph assumes GPU threads to well behave, i.e., not
accessing shared memory resources while the server communicates
a CPU memory activity. However, this is often not the case when
addressing general-purpose GPU kernels. In case no guarantee can
be given for a Copy Engine transfer or a CUDA kernel computa-
tion to complete within a grace period, we hereafter present an
efficient mechanism to preempt their activities before interfering
with critical CPU tasks.

For DMA-based activities, it is very easy to intercept any CUDA
runtime calls to cudaMemcpy related functions, to split transfer
commands according to a pre-determined granularity. This tech-
nique increases the overhead of copy tasks, establishing more DMA
transfers and related host synchronizations. However, such an over-
head can be easily estimated and optimized according to the desired
transfer granularity, as shown in [14]. In our setting, we observed
that a transfer granularity of 1 MB is sufficient to saturate the GPU
Copy Engine bandwidth. A similar conclusion was reached in [4]
for a similar scenario. The amount of time needed to transfer 1 MB
is, therefore, the constant used to determine how many bytes can
be transferred using the copy engine while the CPU thread is in a
compute phase, as given by the following formula:

_ t(C) - t(GPUreq)
- T(Qck)

where Q is the size (in MB) of the Copy Engine transfer allowed
in the grace period; t(C) is the end of the ongoing CPU_COM phase,
as communicated by the CPU to the server; t(GPUyeq) is the time
at which the GPU thread contacted the server to start its activity;
and T(QcEg) is the time needed to complete a single 1 MB DMA
transfer.

(1)
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Figure 3: Timeline of an example sequence of interactions between a real-time CPU thread and a best effort GPU task

4.3 Kernel preemption

Preempting a CUDA kernel to split its execution between differ-
ent CPU_COM phases is not a trivial task. However, we found a
convenient solution for allowing kernel preemption, by exploiting
the concepts of single CUDA context and stream priorities. The
traditional model of CUDA applications involves the creation of
as many CUDA contexts as the needed applications. While the
driver has no problem handling these situations, this might lead
to additional overhead. Hence, an alternative model in which a
single CUDA model acts as a proxy to be shared among different
applications represents a more suitable solution for reducing driver
overheads, facilitating inter-process communication®. More than
trying to reduce driver overhead or to exploit more efficient ways
for process communication, having a single context gives us the
ability to exploit priority streams in CUDA, as we can assign a
different stream for each application. A CUDA stream is an abstrac-
tion of a queue of commands directed to the GPU: ideally, such
commands are to be executed in parallel. However, such parallel
execution can only take place if the commands in execution from
each queue have reduced requirements in terms of GPU resources?,
i.e., registers, shared memory, block number and size. In most cases,
however, kernels get executed concurrently rather than in parallel.
This is the case especially for iGPUs, where the number of SMs is
limited. Such concurrency occurs in a time sharing fashion, with
the programmer having absolutely no control over the length of
the time quanta assigned to each kernel. Starting from CUDA SDK
version 7.5, the NVIDIA TX1 board can now create streams with
an attached priority value. Only two discrete priority levels are
available to the programmer: HIGH and LOW. A simple experiment
is able to show that creating two streams, each with a different pri-
ority level, allows the kernel inserted in the higher priority stream
to preempt a previously launched kernel inserted in the lower pri-
ority stream. Moreover, the high priority kernel runs to completion,
hence it does not share any time slice with the lower priority ker-
nel. This mechanism can be exploited for creating a Spin Kernel
able to saturate the GPU occupancy level, hence preempting any
other currently running kernel. The Spin Kernel does not make

3 A detailed implementation is provided by CUDA MPS: https://docs.nvidia.com/deploy/
pdf/CUDA_Multi_Process_Service_Overview.pdf
4These requirements are also known in CUDA terms as kernel occupancy

any memory access and can be tuned to last for an arbitrarily large
duration.

Figure 4a shows a Spin Kernel preempting a GPU thread that
does not complete before the end of a CPU_COM phase, prevent-
ing the preempted kernel from accessing system DRAM during
CPU_MEM phases. The server sets the duration of the Spin Ker-
nel in order to match the length of the CPU memory phase. The
proposed mechanism has some similarity with the MEMGUARD
mechanism [25] mentioned in section 2 for throttling CPU-side
memory accesses.

In order to spin the GPU, the server has to know the worst case
preemption time, i.e., how long does it take for the Spin Kernel
to evict a previously running kernel from the streaming multipro-
cessors. For measuring this timing window, we assign the Spin
Kernel to the high priority stream, and a copy kernel, as the one
described in section 3, to the lower priority stream. Both kernels
have a known duration measured without interference. The lower
priority kernel is executed first, waiting 100 us before submitting
the Spin Kernel. The result of the experiment is shown in figure 4b,
where the nvprof output of kernel preemption has been analysed
with NVIDIA NSIGHT visual profiler.

By subtracting our defined 100us delay time from the total time
between the start of the copy kernel and the start of the Spin Kernel,
we obtain the actual preemption time. Out of the observed iterations,
this time stabilizes between 120 and 170 ps. The variation depends
on the number of stalling points in the lower priority kernel, i.e.,
instructions that cause a warp de-scheduling, such as memory
accesses and barriers. A kernel with a reduced number of stalling
points typically has a higher pre-emption time. Interestingly, it
also means that the kernel is mostly computing without accessing
memory, so that a larger preemption time does not constitute a
significant threat to CPU memory phases.

5 EXPERIMENTS AND RESULTS

In compliance with the model described in the previous section,
we consider a CPU real time thread pinned to one core. The CPU
thread behavior is constant throughout its execution and for the
different experiment iterations. Instead, different configurations
are considered for the GPU task. Fixing the CPU thread varying
the GPU computation does not imply a loss of generality in our
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Figure 4: On the left side, a Spin Kernel preemption over a long lasting GPU activity. On the right side, nvprof output of kernel

preemption analysed with NVIDIA NSIGHT visual profiler.

Table 2: Timings of a single PREM-ized iteration on the
tested board. Times in ps

TK1 TX1
T(My) | T(C) | TMy) || T(My) | T(C) | T(My)
596 | 8704 | 1008 || 426 8278 | 687 MIN
722 | 8849 | 1223 || 642 9188 | 914 MAX
645 8761 | 1076 || 444 | 8784 | 716 AVG

conclusion. As will be later detailed, a key parameter for assessing
Silperformance is given by the ratio between the CUDA kernel
execution time and the time to completion of the CPU compute
phase. In the loading phase, the CPU thread reads an amount of
data equal to 85% of the LLC size. The remaining 15% of the LLC is
reserved to server interactions and GPU driver activities.

The computation phase is a simple RGB-to-Y conversion oper-
ated on pre-fetched integer data. During the memory loading phase,
previously computed data is flushed into system DRAM and then
copied to an output buffer. The total size of data to be processed by
the CPU thread amounts to 256 MB, corresponding to 145 iterations
of PREM-ized phases for a single experiment. Table 2 shows the
observed execution times for these phases in both tested boards
with no interference.

The GPU thread is pinned to the remaining cores of the SoC. We
define a single GPU iteration as a H2D copy of 50MB for the TK1,
100MB for the TX1, followed by a compute kernel of parametrized
duration that alternates memory fetching instructions to purely
compute instructions. The compute phase operates on variable sub-
sets of the previously sent data. The size of this subset is always
bigger than GPU L2 cache, so to be sure that the kernel phase will ac-
cess system DRAM during its execution. Finally, a D2H copy phase
is performed, having the same size as the H2D transfer. T(Qcg)
is estimated to be 122us for TX1 and 250us for TK1. We run the
GPU task for 100 iterations per experiment. As opposed to the CPU
thread (scheduled with FIFO 99 priority), the GPU thread is sched-
uled with CFS (linux default non real-time scheduler).

Each measure is repeated and analyzed for 1350 runs.

5.1 Tegra K1

Figure 5 reports the experimental results for the TK1 board, show-
ing the measured latencies of each CPU phase with no interference
(alone), un-arbitrated GPU interference (CPU+GPU interf), and
with our memory arbitration mechanism (CPU+GPU arb). The

kernel duration is initially set to 37% of T(C), i.e., the minimum
observed execution time of the CPU_COM phase with no interfer-
ence.

The dramatic impact of GPU interference can be clearly seen
on both memory phases, with a CPU-side memory latency that
can be three times higher that in the non-interfered case, consis-
tently with the latency impact measured in section 3. Our server
mediation approach manages to keep the latency really close to
the non-interfered case, with a negligible performance deteriora-
tion. Even if with a lesser extent, the CPU computing phase is also
somewhat affected by the GPU activity, both with and without
server arbitration. This is due to CUDA callback threads and other
driver activities. How to mitigate such effects is currently under
investigation.

The above results have been obtained only by splitting CE re-
lated memory transfers. Due to the CUDA SDK version installable
on the TK1, it is impossible to exploit the kernel preemption mech-
anisms detailed in section 4.3. This implies allowing the GPU to
perform a CUDA kernel invocation only if its kernel duration is
smaller than T(C). If this is not the case, the GPU thread may ex-
perience starvation. In order to estimate the impact of the server
arbitration policies w.r.t. the GPU thread, we parametrize the GPU
kernel duration as a function of T(C), to then measure how many
GPU task iterations are performed within the locked time window,
i.e., the server-arbitrated time frame until the CPU thread sends a
NO_OPER signal, as depicted in figure 3. We denote as GCratio the
ratio between the worst case duration of a CUDA kernel and T(C).
Figure 6 shows the number of GPU iterations performed during
the locked time window when varying GCratio.

A slow decrement of GPU iterations is visible increasing the
GCratio, until reaching a starvation point, after which no GPU
iteration is completed until the CPU thread becomes idle. In the TK1
case, starvation can only be avoided by splitting kernel executions
into smaller phases, or recurring to substantial code modifications,
as discussed in section 2, incurring additional overhead.

5.2 Tegra X1

The CUDA SDK version for the TX1 supports two discrete stream
priorities, allowing us to test our Spin Kernel solution. GPU kernel
duration is initially set to 34% of T(C) for the case with no kernel
preemption, and 140% of T(C) with kernel preemption.

Figure 7 shows the results, which are fairly similar to the TK1
case. Once again we highlight how our server mediation strategy
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Figure 5: Results obtained on NVIDIA TK1. Times in ps.
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Figure 6: Starvation point on NVIDIA TK1. No kernel pre-
emption strategies involved.

manages to drastically reduce the interference of the GPU on CPU
memory phases, both in the worst-case and in the average-case. Our
proposed kernel preemption mechanism (CPU+GPU pre) causes
a limited performance loss due to the added driver overhead for
invoking more kernels (the Spin Kernel has to be explicitly called).
Still, it shows a significant improvement w.r.t. the non-arbitrated
case.

To profile GPU starvation, we performed the same experiment
described in the TK1 case, with and without kernel preemption.
Results are shown in figure 8. Without kernel preemption, the same
starvation point observed in the TK1 is reached when GCratio ex-
ceeds 1. With kernel preemption, a dramatic improvement in GPU
efficiency is showed, allowing the execution of 34 GPU iterations
during the locked time window. Experiments on both boards demon-
strated the efficacy of our server mediation strategy for predictably
bounding the interference experienced by CPU tasks due to GPU
activities. However, depending on the size of GPU tasks and the
availability of prioritized streams, the impact on GPU activities may
significantly vary. The following section more formally analyzes
these effects.

6 LIMITATIONS AND FURTHER ANALYSES

We have shown that our approach can safely protect CPU memory
phases and guarantee predictability and freedom from interference
due to GPU tasks. We hereafter discuss how to extend the bandwidth
server mediation approach to multi-core real time task sets, and
how to evaluate the loss of efficiency at the GPU side.

6.1 Extension to CPU multi-core

Our server approach can be extended to multi-core scenarios. The
dynamic nature of Sil" allows handling multi-core scenarios with
minimal code modification. As an example, consider a setting with
four cores, with a corresponding number of PREM tasks, as shown
in figure 9.

We assume PREM-ized task in which the memory loading phase
involves core private memory hierarchy. In the case of the con-
sidered boards, this corresponds to either using L1 data caches, or
partitioning the L2 cache among the various cores. The GPU activ-
ity (either CE or EE), has to take place in the time window delimited
by the end of the last CPU memory loading phase to the start of
the first memory unloading phase. This restricts the applicability
of our approach within such a smaller time window. If the time
window is too small for a single GPU memory transfer or kernel
preemption time, the GPU task might experience a long starvation.
By properly dimensioning PREM phases, this latter scenario can be
conveniently avoided.

It is now easy to realize that the case with multiple real-time
tasks concurrently scheduled onto one or more cores can be eas-
ily treated with our SiI' mechanism, by adapting the size of the
memory/computation phase according to the requirements of the
executing real-time task. The dynamically varying sizes of the
server phases allow SiI" to cope with the different requests of the
tasks concurrently running on the host cluster. The delay imposed
to GPU activities directly depends on the memory utilization of the
CPU tasks, as well as on the granularity of their memory accesses.

6.2 Cost of server communication

In our experiments, the server was basically acting as a memory
location accessible by all involved components. This was sufficient
for this prototyping phase. However, we plan to integrate Sil" as a
kernel module on a RTOS or on a hypervisor.

The delay due to contacting the server is equal to the latency
of accessing a variable located in system DRAM. Such delay can
be easily inferred from the experiment of section 3. When imple-
menting Sil" as a kernel module, a system call has to be performed
to access the server. System call overheads depend on the adopted
OS and tested board features. TX1 with standard L4T O.S. has an
estimated system call overhead of about 260 ns (calculated as round
trip time). Hypercall overhead depends on the adopted hypervisor.
Recently, support for TX1 on the Jailhouse hypervisor [21] has been
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Figure 7: Results obtained on NVIDIA TX1. Times in ys.
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Figure 8: Starvation point on NVIDIA TX1. Blue: no kernel
pre-emption, Red: kernel pre-emption enabled.

Figure 9: Example scenario with a multi-core real-time task
set. A single PREM iteration per core is shown.

made available. A hypercall to a bare metal cell (implementing the
Sil" server as a Jailhouse lightweight proxy cell) is measured in a
range between half a ys to 2 ps.

In section 6.3, this cost, referred to as €, is considered to evaluate
the potential starvation of GPU applications induced by Sil". This
cost can be also used to infer an efficiency loss measure on the CPU
side, considering that the CPU task has to pay an overhead of €
before starting a memory or a computation phase.

6.3 GPU efficiency loss analysis

In our model, GPU activities within a single GPU iteration can be
divided into Memory phases Mg and Kernel phases K. Memory
phases are memory transfers managed by the Copy Engine, either
H2D or D2H. Kernels are computing phases scheduled in the GPU
execution engine. We would like to find out how much each phase

is delayed (worst case), according to its estimated duration (T(Mg)
or T(K)).

Being € the server request overhead, each memory transfer M
may finish its execution by

End(Mg) = (em + TMy) + T(M))

{T](:’(\/é();) (3¢ + T(My) + T(ML) + T(C))
+ €+ T(Mg) mod T(C) @

where ey < € + T(QcE).
For the kernel phases K we have to consider different cases:
e (A)T(K) < T(C)
e (B) T(K) > T(C), with K pre-emptable
e (C) T(K) > T(C), with K non pre-emptable
In the first and second case (A and B), it is always possible to

execute the kernel, while different considerations have to be made
for the third case (C). W.r.t kernel K, in the first case (A) we have:

End(K) = (ex + T(My) + T(ML)) + T(K) (3)

where e < € + T(K) represents the condition boundary for
wich preemption is possible.

In the second case (B) we obtain an equation similar to the one
inferred for the memory phase:

End(K) = (ep + T(My) + T(Mp))+
T(K)
T(Cp)
+ € + T(K) mod T(Cp) (4)

J . (36 + T(Mgorst) + T(Mz/orst) + T(CP))

where T(Mp*" *) and T(M}**™*") are the measured worst case ex-
ecution time for My and My, T(Cp) = [T(Mr) + T(C) + T(My)] —
[T(M{}"’m) + T(MZ’O’“)] and ep < € + pre-empt time.

The term T(Cp) of the equation 4 takes into account that the Spin
Kernel used to pre-empt the GPU compute phase is sized according
to My and M} worst execution times.

In this case, in order to avoid GPU task starvation, the necessary
condition is T(Cp) > 0.

For the last case (C) a non pre-emptable kernel phase can not
execute during the locked time window without interfering with
CPU memory phases; therefore the kernel phase must wait un-
til the CPU thread releases the memory lock. This is the case in



RTNS ’17, October 4-6, 2017, Grenoble, France

which starvation times are noticeably prolonged (see experiments
in section 5.1).

7 DISCUSSION AND FUTURE WORK

After measuring the dramatic impact of unregulated CPU and iGPU
parallel access to central memory in embedded devices, we pre-
sented a novel arbitration mechanism called Sil". Sil is able to
efficiently orchestrate CPU and GPU memory accesses. By means
of a mediation effect enabled by a memory arbitration server, the
memory contention due to GPU engines is drastically reduced, al-
lowing host-side real-time tasks to access memory with little to
no performance loss, even when executing in parallel with GPU
activities. In one of the two boards used in our experiments, we
were able to demonstrate an improved mechanism to preempt ex-
ecution kernels running on the GPU, allowing a reduction of the
starvation of GPU tasks. This was enabled by exploiting CUDA
stream priorities and related CTA level preemption, introducing
a GPU implementation of memory bandwidth regulation mecha-
nisms that have been previously introduced only at CPU-side (i.e.,
MEMGUARD). We also showed how the proposed approach can be
easily extended to PREM tasks concurrently executing on a multi-
core host, leaving a more detailed schedulability analysis for this
setting as a future work. We are also working on extending SiT’ to
other GP-GPU API such as OpenCL, in order to be able to port it
to architectures other than NVIDIA’s: this port is relatively easy
to achieve as every CUDA function call and features exploited for
developing SiT" have an OpenCL counterpart that work in a very
similar way.

The promising results presented with our approach also call for
further refinements in the server behavior. A promising research
direction is related to more fine grained bandwidth arbitration
between CPU and GPU. While the presented approach gives full
priority to the CPU, the server can be easily modified to selec-
tively allow GPU activities to overlap with CPU memory phase. By
controlling such an overlap, less constraints may be imposed to
both clients when accessing memory, while still retaining real-time
guarantees. The final objective of our research is to implement
system-wide server-based arbitration policies (possibly at hyper-
visor level) that are able to orchestrate CPU and GPU real time
tasks with said methodology. A promising instrument to do so
may be applying the PREM methodology also to CUDA kernels.
This is achievable with CUDA warp specialization [5] as shown in
preliminary experiments [11].
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