
Adaptivity & Control of
Resources in Embedded Systems

D4a

Resource reservation scheme
evaluation

Responsible: Scuola Superiore Sant’Anna (SSSA)

Marko Bertogna (SSSA)

Project Acronym: ACTORS
Project full title: Adaptivity and Control of Resources in Embedded Systems
Proposal/Contract no: ICT-216586
Project Document Number: D4a 0.1
Project Document Date: 2008-12-17
Workpackage Contributing to the Project Document: WP4
Deliverable Type and Security: R-PU

Contents

Contents 3

1 Introduction 5

2 The Generic Resource Reservation Framework 7
2.1 Open environments . 8
2.2 State Diagram . 9
2.3 Design considerations . 12
2.4 Reclaiming of unused bandwidth . 13
2.5 Aggressive reclaiming . 15

3 Existing solutions 17
3.1 Dynamic Priority Servers for Single Core Systems 17
3.2 Fixed Priority Servers for Single Core Systems 19
3.3 Other Servers for Single Core systems 20
3.4 Servers for Multi Core Systems . 21

Bibliography 23

3

Chapter 1

Introduction

The design and implementation of open real-time environments [1] is currently one
of the more active research areas in the discipline of real-time computing. Such
open environments aim to offer support for real-time multiprogramming: they per-
mit multiple independently developed and validated real-time applications to exe-
cute concurrently upon a shared platform. That is, if an application is validated to
meet its timing constraints when executing in isolation, then an open environment
that accepts (or admits, through a process of admission control) this application
guarantees that it will continue to meet its timing constraints upon the shared plat-
form.

To guarantee temporal isolation among various components, proper bandwidth
reservation mechanisms need to be adopted. In the past, many different Resource
Reservation schemes have been designed. In this report, we will analyze the ex-
isting techniques for the implementation of reservations upon single and multiple
processor architectures. Since a large number of different solutions is available in
the literature, we will try to integrate the most interesting approaches into a stan-
dard description of the available features with a homogeneous notation. This will
allow to better understand the existing relations among previously proposed re-
source reservation techniques.

5

Chapter 2

The Generic Resource Reservation
Framework

We consider a set of applications Ak to be scheduled on a shared computing plat-
form. Each application may be composed of a set of hard, soft or non real-time
tasks. Each task τi consists of a sequence of jobs that need to receive a certain
amount of execution. In order to meet the mandatory deadlines of hard real-time
tasks, it is necessary to provide upper bounds on the worst-case execution times
(WCET) of such tasks. For soft and non real-time tasks, instead, there is no need
to specify worst-case parameters, since there are no hard deadlines. The weaker
timing requirements of soft and non real-time tasks makes it inappropriate to treat
such tasks as hard real-time tasks, firstly because their unpredictability could lead
to an underestimation of the WCET, compromising the guarantee done on the other
tasks; secondly because it would be very inefficient, since trying to guarantee a task
with a WCET much greater than its mean execution time would cause a waste of
the CPU resource.

This problem can be solved by a bandwidth reservation strategy, which assigns
each soft task a maximum bandwidth, calculated using the mean execution time
and the desired activation period, in order to increase CPU utilization. If a task
needs more than its reserved bandwidth, it may slow down, but it will not jeopar-
dize the schedulability of the hard real-time tasks. By isolating the effects of task
overloads, hard tasks can be guaranteed using classical schedulability analysis. The
enforcement of such bandwidth reservation strategy may be accomplished through
the use of real-time servers. A server is an abstract entity used by a scheduler to
reserve a fraction of CPU-time to a particular instance. Each server Sk is charac-
terized by the period of the reservation Pk and by the reserved execution time per
period Qk; we define Uk = Qk/Pk the fraction of CPU-time reserved by server Sk,
also called utilization factor. In addition, each server maintains its own internal
variables that are updated by the scheduler depending on the server rules. One of
these variables is the server priority. The servers are inserted in the priority queue
of the scheduler. When a server is selected by the scheduler to execute, the corre-
sponding instance is executed and the server budget is accordingly decremented.

Real-time servers are not only used to schedule soft and non real-time tasks
together with other instances having hard timing requirements, but also to provide
temporal isolation among different applications in a hierarchical environment. In
such systems, different applications need to share a common computing platform,
without interfering each other. By encapsulating each application in a particular
real-time server, it is possible to enforce the desired isolation among the various
system components. When a particular server is selected for execution by the high-

7

level scheduler, the corresponding application is executed. The internal scheduler
of the selected application will then decide which instance to execute. Note that an
application could also select to execute another (lower-level) server, increasing the
hierarchical structure depth.

In the following, we assume each application Ak be scheduled by means of a
dedicated server Sk. Since an application may as well be composed of a single task,
the above mentioned bandwidth reservation mechanism for soft and non real-time
tasks can be described with the same model.

The next section will provide a more detailed description of the hierarchical
system under consideration.

2.1 Open environments

In this section we resume the characteristics of the addressed environment. A more
detailed description can be found in the closely related deliverable D4b.

We will denote as “open environment” a system in which several independent
applications A1, . . . , Aq execute upon a shared processing platform. The shared
processing platform may comprise one or more preemptive processors. We will
distinguish between:

• a unique system-level scheduler (or global scheduler), which is responsible for
scheduling all admitted applications on the shared processing platform;

• one or more application-level schedulers (or local schedulers), that decide how to
schedule the jobs of an application.

Figure 2.1: Generic structure of an open environment.

An interface must be specified between each application and the open environ-
ment. The goal of this interface specification is to abstract out and encapsulate the
salient features of the application’s resource requirements. The open environment
uses this information during admission control, to determine whether the applica-
tion can be supported concurrently with other already admitted applications; for
admitted applications, this information is also used by the open environment dur-
ing run-time to make scheduling decisions. If an application is admitted, the inter-
face represents its “contract” with the open environment, which may use this in-
formation to enforce (”police”) the application’s run-time behavior. As long as the
application behaves as specified by its interface, it is guaranteed to meet its timing

8

constraints; if it violates its interface, it may be penalized while other applications
are isolated from the effects of this misbehavior. We require that the interface for
each application Ak be characterized by two parameters:

• A virtual processor (VP) speed αk; and

• A jitter tolerance ∆k;

The intended interpretation of these interface parameters is as follows: all jobs of the
application will complete at least ∆k time units before their deadlines if executing upon a
dedicated processor of computing capacity αk.

We now provide a brief overview of the application interface parameters. Fur-
ther details on the adopted interface are available in deliverable D4b.

VP speed αk

Since each application Ak is assumed validated upon a slower virtual processor,
this parameter is essentially the computing capacity of the slower processor upon
which the application was validated.

Jitter tolerance ∆k

Given a processor with computing capacity αk upon which an application Ak is val-
idated, this is the minimum distance between finishing time and deadline among
all jobs composing the application. In other words, ∆k is the maximum release
delay that all jobs can experience without missing any deadline.

At first glance, this characterization may seem like a severe restriction, in the
sense that one will be required to “waste” a significant fraction of the VP’s com-
puting capacity in order to meet this requirement. However, this is not necessarily
correct. Consider the following simple (contrived) example.

Example 1 Let us represent a sporadic task [2, 3] by a 3-tuple: (WCET, relative dead-
line, period). Consider an application comprised of two sporadic tasks {(1, 4, 4), (1, 6, 4)}
to be validated upon a dedicated processor of computing capacity one-half. The task set fully
utilizes the VP. However, we could schedule this application such that all jobs always com-
plete two time units before their deadlines. That is, this application can be characterized by
the pair of parameters αk = 1

2 and ∆k = 2.

Observe that there is a trade-off between the VP speed parameter αk and the
timeliness constraint ∆k — increasing αk (executing an application on a faster VP)
may cause an increase in the value of ∆k. Equivalently, a lower αk may result in
a tighter jitter tolerance, with some job finishing close to its deadline. However,
this relationship between αk and ∆k is not linear nor straightforward – by careful
analysis of specific systems, a significant increase in ∆k may sometimes be obtained
for a relatively small increase in αk.

Our characterization of an application’s processor demands by the parameters
αk and ∆k is identical to the bounded-delay resource partition characterization of Feng
and Mok [4, 5, 6].

2.2 State Diagram

As we previously mentioned, the necessary isolation among different applications
must be enforced by proper scheduling mechanisms. We will show here how ex-
isting real-time servers can be used for this purpose. First of all we will present a

9

3

Contending
Non−

Contending SuspendedInactive
1

5 4 6

2

Figure 2.2: State transition diagram. The labels on the nodes and edges denote the
name by which the respective states and transitions are referred to in this paper.

basic version of an EDF-scheduled real-time server. Secondly, we will show how to
enhance the basic functionalities of this server with some mechanisms for a more
efficient usage of the available bandwidth. Finally, we will show how existing al-
gorithms relate to the presented model.

Our basic server-based scheduling algorithm is essentially an application of the
Constant Bandwidth Server (CBS) of Abeni and Buttazzo [7], enhanced to allow for
the concurrent execution of different applications in an open environment.

CBS-like servers have an associated period Pk, reflecting the time-interval at
which budget replenishment tends to occur. For a server, the value assigned to
Pk is as follows:

Pk ←
∆k

2(1− αk)
. (2.1)

In addition, each server maintains three variables:

• a deadline Dk;

• a virtual time Vk; and

• a reactivation time Zk.

Since each application has a dedicated server, we will not make any distinction
between server and application parameters. Let us define an application (or server)
to be backlogged at a given time-instant if it has any active jobs awaiting execution
at that instant, and non-backlogged otherwise.

Definition 1 (backlogged) A server is backlogged if the corresponding application has
some task waiting to be executed.

In the following, we will denote as “fair share” the amount of execution re-
ceived by an ideal fluid server that executes for αt every t time-units (as a General-
ized Processor Sharing (GPS) server [8] with weight α).

10

At each instant during run-time, each server Sk (or corresponding application
Ak) is in a particular state. There are four possible states (see Figure 2.2). The
transition from one state to another depends on the server being backlogged or
not, and on the amount of execution it received.

• Each non-backlogged application is in either the Inactive or Non-Contending
states. If an application has executed for more than its “fair share,” then it is
Non-Contending; else, it is Inactive.

• Each backlogged application is in either the Contending or Suspended state.
While contending, it is eligible to execute; executing for more than it is eligible
to results in its being suspended.

An Executing state is omitted from our description to simplify the diagram and
because it is clear when the server will transition to and from the Executing state:
there is an implicit Executing state with transitions to and from the Contending state
(when a server is, respectively, de-scheduled or scheduled for execution).

Note that there is no analog of the Suspended state in the original definition of
CBS [7]. This state has been introduced to allow our general framework to include
also the description of hierarchical servers, as it will be better explained later on.

The server variables are updated according to the following rules (i)–(vii) (let
tcur denote the current time).

(i) Initially, each application is in the Inactive state. If application Ak wishes to
contend for execution at time-instant tcur then it transits to the Contending state
(transition (1) in Figure 2.2). This transition is accompanied by the following
actions:

Dk ← tcur + Pk

Vk, Zk ← tcur

(ii) At each instant, the system-level scheduling algorithm selects for execution
some application Ak in the Contending state — we assume this selection is
made according to a system-level EDF scheduler, selecting for execution the
contending server Sk having the earliest absolute deadline.

(iii) The virtual time of an executing application Ak is incremented by the corre-
sponding server at a rate 1/αk:

d
dt

Vk =
{

1/αk, while Ak is executing
0, the rest of the time

(iv) If the virtual time Vk of the executing application Ak becomes equal to Dk, then
application Ak undergoes transition (2) to the Suspended state. This transition
is accompanied by the following actions:

Znew
k ← Zold

k + Pk

Dk ← Znew
k + Pk

(v) An application Ak that is in the Suspended state necessarily satisfies Zk ≥ tcur.
As the current time tcur increases, it eventually becomes the case that Zk = tcur.
At that instant, application Ak transits back to the Contending state (transition
(3)).

11

Observe that an application may take transition (3) instantaneously after tak-
ing transition (2) – this would happen if the application were to have its vir-
tual time become equal to its deadline at precisely the time-instant equal to its
deadline.

(vi) An application Ak which no longer desires to contend for execution (i.e. the
application is no longer backlogged) transits to the Non-Contending state (tran-
sition (4)), and remains there as long as Vk exceeds the current time. When
tcur ≥ Vk for some such application Ak in the Non-Contending state, Ak transi-
tions back to the Inactive state (transition (5)); on the other hand, if an appli-
cation Ak desires to once again contend for execution (note tcur < Vk, other-
wise it would be in the Inactive state), it transits to the Suspended state (transi-
tion (6)).

Observe that an application may take transition (5) instantaneously after tak-
ing transition (4) – this would happen if the application were to have its virtual
time be no larger than the current time at the instant that it takes transition (4).

The value of Vk is a measure of how much reserved service has been consumed
by that time. At each instant in time, the server has received the same amount of
service that it would have received by time Vk if executing on a dedicated processor
of capacity αk.

The system-level scheduler will simply select for execution the contending server
with the earliest deadline. In brief, we implement EDF among the various con-
tending applications, with the application deadlines (the Dk’s) being the deadlines
under comparison.

2.3 Design considerations

The main difference of the presented algorithm from the classic Constant Band-
width Server presented in [7] is the insertion of a "Suspended" state. We will here-
after provide more details on these design decisions.

Bounded-delay server

The introduction of a Suspended state is needed to prevent the “deadline-aging"
problem that arises with classic algorithms. With CBS, the deadline of a server that
exhausts its budget is postponed, recharging the budget. In a particular situation
in which there is only one backlogged server S1, with no other contending server in
the system, S1 can continuously execute, repeatedly postponing its deadline. When
other servers become backlogged, S1 will be prevented to execute for a long time,
since its deadline went too far. To avoid this problem, we introduce a Suspended
state, preventing the server deadline to become too large. In this way, we will be
able to implement a bounded-delay server, according to the following definition.

Definition 2 A bounded-delay server is a server that implements a bounded-delay par-
tition.

The bounded-delay resource partition model, introduced by Mok et al. [4], is an
abstraction that quantifies resource “supply” that an application receives from a
given resource.

12

Definition 3 A server implements a bounded-delay partition (αk, ∆k) if in any time
interval of length L during which the server is continually backlogged, it receives at least

(L− ∆k)αk

units of execution.

Rules (i) to (vi) basically describe a bounded-delay version of the Constant
Bandwidth Server, i.e., a CBS in which the maximum service delay experienced by
an application Ak is bounded by ∆k. A similar server has also been used in [9, 10].

Reducing the preemption overhead

A simple modification to rule (vi) may reduce the number of times a server is pre-
empted. When undertaking transition (6), the following actions can be taken:

Zk ← Vk

Dk ← Vk + Pk

Such operations guarantee that when an application resumes execution, its bud-
get is full, potentially reducing the number of preemptions. Without taking such
actions when undertaking transition (6), the current server budget and deadline
are maintained, and it is less likely that a task will complete before the budget be-
ing exhausted. In other words, if the virtual time Vk is smaller than the deadline
Dk when undertaking transition (6) (because Ak executed for less than expected),
the original server would not increment Dk, but continue executing the applica-
tion with the old deadline (and consequently, with greater priority), increasing the
server responsiveness. The downside is that there are more chances for the server
to be preempted due to budget exhaustion.

Therefore, in deciding whether to increment Dk as above or not, one need to
consider the following tradeoff. If the deadline is not incremented and the appli-
cation needs to execute for a short amount of time, then Ak is likely to complete
within the current deadline, and hence to complete before it would in the presence
of deadline-incrementing. On the other hand, not incrementing the deadline makes
it more likely that Ak would not be able to complete within the current deadline,
requiring deadline postponement and consequently, further preemptions. What
could finally drive the decision is that the period parameter of a server is an indica-
tion of the granularity of the time from the perspective of the server. By not incre-
menting deadlines, we may obtain a response that is quicker than this granularity,
but presumably this is not of much significance to the application. On the other
hand, the potential drawback of additional preemptions is a very real concern, im-
posing a larger overhead on the system, particularly in systems where most of the
job execution requirements are known to be no larger than the server budget αkPk.
In these cases, using the deadline updating mechanism presented in this section
seems the best choice.

2.4 Reclaiming of unused bandwidth

The introduction of the Suspended state in the definition of the server presented
in Section 2.2 has a side effect: our scheduling framework becomes non work-
conserving. Basically, it can happen that the system is idle while some applica-
tion is waiting to be executed, since all backlogged servers are in Suspended state.

13

To avoid this problem, as well as to improve the distribution of the unused band-
width left by applications that execute for less than what declared, it is possible to
adopt particular bandwidth reclaiming mechanisms.

In the last decade, many different techniques have been presented for the re-
claiming of unused capacity in a server-based real-time system. The considerable
attention that has recently been dedicated to this problem can be motivated with
the typical issues that can arise while designing a reservation-based environment
in an effective way. The need not to over-reserve the capacity dedicated to a partic-
ular task or application suggests one to assign, when possible, server parameters
according to some average execution value, using worst-case parameters only for
very critical instances. In order to ensure good system performances, soft real-time
and best effort processes can then reclaim over-allocated capacity from servers that
did not need it.

Previously proposed works dealing with this problem presented a large num-
ber of different techniques to distribute the spare capacity in an effective way, al-
lowing overrun handling and fast system responsiveness. However, it is not clear
how these approaches are related, and to what extent they contribute to solve the
addressed problems.

To better understand the mechanisms under the various reclaiming algorithms,
we will first distinguish the unused (reclaimable) bandwidth into the following
typologies.

• Not-admitted bandwidth: it is the share of the CPU that has not been accounted
for in the admission control test. It corresponds to the capacity left when the
sum of the bandwidths of the admitted servers is lower than the capacity of
the computing platform.

• Inactive capacity: it is the capacity associated to servers that are not backlogged
and that since their last activation executed for less than their fair share. In
other words, this is the capacity that is left by admitted servers that temporar-
ily don’t have tasks or jobs in their ready queue. This is the bandwidth safely
reclaimed by the GRUB algorithm [9].

• Cache capacity: it is the remaining budget of servers that have an earlier com-
pletion (an underrun) and that are known to activate themselves again at
least after the next server deadline. This is the kind of capacity reclaimed
by CASH [11] and BASH [12] algorithms.

In Section 2.5, we will show that there are also other kinds of capacities that can be
reclaimed in a “less safe” way. For the moment, we will focus only on the reclaim-
ing techniques that do not violate the temporal isolation property of the admitted
servers. We hereafter detail such techniques.

• A sort of implicit reclaiming mechanism is used by any work-conserving server.
Systems holding this property will never be idle when an application is wait-
ing to be executed. Therefore, the bandwidth left unused by an application
will always be used by some other application.

• A simple rule that can be easily added to the server presented in Section 2.2 to
render it work-conserving is resetting to Inactive the state of all servers when
the processor is idle. In this way, backlogged servers that were in Suspended
state will immediately switch to the Contending state, allowing some applica-
tion to be scheduled.

14

• Another option to add the work-conserving property to the presented server
is implementing the time-warping mechanism used by IRIS in [13] and BEBS
in [14]. According to this mechanism, whenever the system is idle because all
servers are either non-backlogged or in Suspended state, the reactivation time
Zk of each suspended application Ak is decreased by (Zmin− tcur), where Zmin
is the first reactivation time among all suspended servers1:

∀Ak : Zk ← Zk − (Zmin − tcur).

This is sufficient to avoid an idle condition when there are backlogged servers
waiting to be executed. Somewhat counterintuitively, this solution shows a
fairer distribution of the available bandwidth than with the previously de-
scribed approach.

• For non work-conserving systems, a simple way to reclaim the not-admitted
bandwidth can be provided by assigning such bandwidth to a new server that
will work as a capacity tank. This server will supply additional execution
to other servers that might need a further share of bandwidth to satisfy a
temporary overrun.

• The inactive capacity may be reclaimed implementing a smart mechanism adopted
by GRUB in [9]. The virtual time Vk of an executing application Ak is up-
dated at a rate αactive/αk, instead than at a rate 1/αk, where αactive represents
the sum of the αk of each admitted application Ak that is either in Contending,
Non-Contending or Suspended state, i.e. excluding all inactive applications.

• Cache capacity may be safely reclaimed only when there are valid reasons to
believe that a non-backlogged server will not become active before a partic-
ular time-instant. The capacity that the server would have used in the con-
sidered time interval may then be safely assigned to other servers, as with
CASH [11] and BASH [12] algorithms. The typical case is when a soft real-
time task encapsulated into a server has an early completion. Since that task
will not be activated until its next period, the unused bandwidth can be as-
signed to a different application, for instance to the next scheduled server.
Nevertheless, the cache capacity will still be associated to the original server
deadline (priority), and accordingly scheduled. Particular care must be taken
when the system is idle. In this case, the cache capacity must be properly
decremented (see [11, 12]) to avoid capacity overallocation. This kind of re-
claiming is not particularly suitable for hierarchical systems or, in general,
for servers that handle more than one task at a time. In these cases, in fact, it
is very difficult to guarantee that a server will not reactivate before a certain
time-instant.

2.5 Aggressive reclaiming

In the literature, there are as well more aggressive reclaiming strategies that “steal”
some bandwidth from other applications. Even if this solution could result in
breaking the temporal isolation of the admitted applications, it can sometimes be
useful when dealing with overloaded system. In some cases, it could be better
to serve an actual overrun using capacities reserved to other servers, rather than

1Note that IRIS decreases as well the deadline of the server(s) that first reactivates. BEBS, instead,
does not decrease any deadline, obtaining a fairer reclaiming of the unused bandwidth.

15

waiting for unused capacities. In fact, such late capacities might appear too late in
time, after the overrunning task already missed its deadline. Therefore, a stealing
server may solve temporary overruns by using in advance the capacity reserved to
future applications, hoping that such capacity will be left unused by some of these
applications. In a certain sense, these strategies try to reclaim “future” unused
bandwidth.

Another sort of aggressive strategy is the self-reclaiming, i.e. the reclaiming of
capacity reserved to future jobs of the same tasks. This form of reclaiming has
been adopted by classic CBS, postponing the deadline of the server to recharge
its exhausted budget. As we previously mentioned, this could lead to the dead-
line aging problem, resulting in a server that does not implement a bounded-delay
reservation.

Other sorts of capacities may be reclaimed when different task models are adopted.
For instance, hard real-time applications may reclaim the capacities associated to
firm, soft or non real-time tasks.

The selection of the most appropriate real-time server mechanisms depends on
the application requirements, as well as on the particular metric one might adopt
for the evaluation of server performances. Various metrics are possible. Each one
is valid, depending on the addressed target:

• deadline miss ratio→ for hard and firm RT tasks;

• normalized response time → for non RT tasks, or, in general, tasks without
an associated deadline that nevertheless require a responsive service.

• average tardiness/lateness→ for soft RT tasks;

The above list is by no means exhaustive (e.g., the actual control performance may
be used for control type tasks, etc.). Greedy algorithms that tend to assign the un-
used bandwidth to the executing tasks show better performances if the first two
metrics are used. On the other hand, if the design target is to minimize the aver-
age tardiness, fair algorithms are preferable, proportionally distributing the excess
bandwidth to all tasks in the system.

16

Chapter 3

Existing solutions

In this chapter, we will review the major existing solutions for the bandwidth reser-
vation in shared processing systems. The survey will be divided into the following
parts:

1. Analysis of the reservation techniques for single processor platforms, with
relation to previously proposed real-time servers, hierarchical schedulers, re-
claiming techniques, etc.

2. Analysis of the few existing solutions for the implementation of reservations
on multiprocessor platforms. Particular attention will be dedicated to the
detection of the main drawbacks and bottlenecks of the existing solutions,
devising possible strategies for the solution of the problems left open.

3.1 Dynamic Priority Servers for Single Core Systems

Total Bandwidth Server and related variants

Among real-time servers based on EDF scheduling, the Total Bandwidth Server
(TBS) presented by Spuri et al. in [15] can be adopted when execution times are
known upon job arrivals. Whenever a new job with execution requirement Ci needs
to be scheduled, the server budget and deadline are set, respectively, to Ci and
max(tcur, Dold) + Ci/U, where U is the server reserved bandwidth. The Constant
Utilization Server (CUS) presented in [16, 17] has similar characteristics, except
for the fact that instead of immediately replenishing the budget when a new job
needs to be executed, it waits until the server deadline. TB∗ [18] is an improvement
over TBS that obtains optimal responsiveness by properly decreasing the server
deadline. Since it is necessary to know in advance the execution requirements of
the scheduled entities, neither of the above servers (TBS, CUS, TB∗) is suitable for
open environments.

Constant Bandwidth Server

A server that does not need any information on the execution times of the sched-
uled entities is the Constant Bandwidth Server (CBS) presented by Abeni and But-
tazzo in [7]. It is similar to the implementation of our basic server described in Sec-
tion 2.2, with one main differences: a self-reclaiming mechanism that allows using
in advance the capacity reserved to future jobs of the executing task. This mecha-
nism is easily obtained by postponing the server deadline as soon as the budget is
exhausted, without needing to wait until tcur ≡ Zk. Therefore, no Suspended state

17

is needed, and the reactivation time Zk becomes useless. The drawback of this ap-
proach is that it is prone to the deadline-aging problem, so that neither CBS can
be efficiently used to serve systems in which tasks are to be executed with more
complex requirements than the simple First-Come First-Served execution.

Not admitted capacity reclaiming: IRIS and BEBS

To solve this problem, Marzario et al. proposed IRIS [13], a server that does not suf-
fer from the deadline-aging problem, and that can be efficiently used for the imple-
mentation of open environments. It is equivalent to our basic server, with the ad-
ditional work-conserving property obtained through a time-warping mechanism,
as the one described in Section 2.4: whenever the system is idle, the reactivation
time of each Suspended server is uniformly decreased, so that the earlier reactiva-
tion time coincides with the current time. A server almost identical to IRIS has been
presented by Brandt et al. in [14]: the Best-Effort Bandwidth Server (BEBS). It is an
improvement over the Rate-Based Earliest Deadline scheduler (RBED), an earlier
server presented by the same group in [19]. The only difference between IRIS and
BEBS is in the actions associated to the time-warping operation. IRIS decreases the
reactivation time of every server and decreases as well the deadline of the server(s)
that first reactivates. BEBS instead does not decrease any deadline, obtaining a
fairer reclaiming.

Inactive capacity reclaiming: GRUB and SHRUB

Lipari and Baruah presented in [9] a CBS-based approach to reclaim the reserved
capacity left free by inactive servers: the Greedy Reclamation of Unused Band-
width (GRUB). As we mentioned in Section 2.4, the virtual time Vk of an executing
application Ak is updated at a rate αactive/αk, where αactive is the sum of the αk of
each admitted application Ak that is not in Inactive state. In this way, in each time
interval dT, an executing server reclaims the share of bandwidth that has not been
reserved to servers that have backlogged work to do, i.e. the share (1−Uactive)dT.
Note that this includes both the inactive and the not-admitted capacity.

GRUB’s reclaiming is “greedy” because this excess capacity is entirely given to
the executing server. Fairer reclaiming strategies may be derived by distributing
the inactive capacity according to some particular policy. The Shared Reclamation
of Unused Bandwidth (SHRUB) presented in [20, 21] distributes the reclaimable
bandwidth according to weights assigned to each application.

Cash capacity reclaiming: CASH and BASH

Two algorithms that are able to reclaim cache capacities have been presented by
Caccamo et al.: CASH [11] and BASH [12] When one knows that a server will not be
activated until a certain time instant, the unused bandwidth is assigned to another
application. This capacity is associated to the original server deadline, and accord-
ingly scheduled. When the system is idle, the cache capacity must be properly
decremented. CASH decreases the earliest deadline CASH capacity by the amount
of idle time. BASH recomputes each BASH capacity as α(Dk − Tidle), where Tidle is
the last idle time. Simplified CASH-based servers are presented in [22].

Aggressive reclaiming: SLASH, BACKSLASH and CSS

Four resource reservation algorithms have been presented in [23], each one improv-
ing over the previous one. From the simplest one to the most aggressively reclaim-

18

ing one, they are: SRAND, SLAD, SLASH and BACKSLASH. While the first two
servers has been designed just to show that it is better to assign the unused band-
width to the highest priority task (as in CASH), the other two servers are more
interesting. SLASH adds a self-reclaiming mechanism that recharges the capacity
postponing the deadline, as with CBS, and reclaims unused capacity from other
servers using its original (unextended and, therefore, earlier) deadline. This allows
a greedier reclaiming than with CASH, since the executing server can use a higher
priority. BACKSLASH further increases the reclaiming capabilities by retroactively
allocating unused capacity to servers that used in advance their own future capac-
ity (with self-reclaiming).

The Capacity Sharing and Stealing (CSS) server presented in [24] integrates the
reclaiming mechanism used by SLASH with the possibility to steal bandwidth re-
served to inactive “non-isolated” servers.

Other dynamic servers

Ghazalie and Baker introduced in [25] the Deadline Deferrable Server (DDS), Dead-
line Sporadic Server (DSS) and Deadline Exchange Server (DXS), adapting to the
EDF case the corresponding algorithms previously defined for fixed priority sys-
tems.

Spuri and Buttazzo introduced five different servers under dynamic priorities
in [26]: Dynamic Priority Exchange (DPE), Dynamic Sporadic Server (similar to the
DSS in [25]), Earliest Deadline Last (EDL) and Improved Priority Exchange (IPE).

Other bandwidth isolation algorithms with rather complex implementations
are the Bandwidth Sharing Server (BSS) [27], its improved version BSS-I [28], and
the Processor Sharing with Earliest Deadline First (PShED) [29].

In [1, 30], Deng et al. introduced the analysis of open environment for real-
time systems . Their two-level hierarchical implementation is based on TBS and
CBS servers. Two attempts for providing the bounded-delay property to CBS and
GRUB have been presented, respectively, in [31] (H-CBS) and [32] (HGRUB).

3.2 Fixed Priority Servers for Single Core Systems

The most used algorithms for the bandwidth reservation in fixed priority systems
are the Deferrable Server (DS) [33] and the Sporadic Server [34, 35]. While DS has
a simpler implementation, SS is able to achieve a larger schedulable utilization.

Both algorithms are able to solve the poor performance of the Periodic or Polling
server previously presented in [36]. The processor reservation approach presented
by Mercer et al. in [37] is similar to a polling server.

The Priority Exchange Server (PE) was introduced in [38, 39]. However, it has
no advantage over a Sporadic Server, but requires a more complex implementa-
tion [34, 35].

Fixed priority algorithms that implement stealing mechanisms have been pro-
posed in [40], [41], and [42].

Two complementary schemes for the reclaiming of unused bandwidth are the
Capacity Sharing server presented in [43] and the HisReWri algorithm proposed
in [14].

The Dual Priority mechanism has been first introduced in [44] and later ex-
tended in[45].

19

3.3 Other Servers for Single Core systems

Hierarchical Loadable Schedulers (HLS) [46] is a framework for the composition of
existing scheduling algorithms using hierarchical scheduling, providing a guaran-
teed scheduling behavior to the applications. Another framework that supports a
hierarchy of arbitrary schedulers, without providing compositional guarantees, is
the CPU inheritance scheduling proposed by Ford and Susarla in [47].

Offline strategies to deal with aperiodic workloads have been presented by
Fohler et al. in [48, 49].

Overrun handling mechanisms for different task models

When different task models are adopted, other mechanisms have been designed
for the bandwidth reclaiming in overrun conditions. For instance, Buttazzo and
Stankovic proposed in [50] the Robust Earliest Deadline (RED) scheduling algo-
rithm for applications composed of firm real-time tasks. In [51], a related algorithm
is described: Robust High Density (RHD). Koren and Shasha presented in [52]
an on-line scheduling algorithm, called Dover, that has an optimal competitive fac-
tor. Baruah and Haritsa [53] proposed an on-line scheduling algorithm (ROBUST)
that maximizes processor utilization during overload conditions, given a minimum
slack factor for all tasks. Thomas et al. proposed Spare CASH, an algorithm that
adapts the reclaiming mechanism of CASH for a different model of firm real-time
tasks [54]. For adaptive tasks that may change their rate, Buttazzo et al. formulated
an algorithm in which rate changes are modeled using spring coefficients [55]. The
Variable Rate Execution Model (VRE) in [56] is a similar (broader) model that im-
plements and provides schedulability conditions for systems in which task execu-
tion rates change dynamically.

Networking algorithms

There are also various algorithms that have been proposed in the networking lit-
erature. Weighted Fair Queueing (WFQ) (also known as packet-by-packet Gen-
eralized Processor Sharing (GPS)) is a well-known proportional-share scheduling
algorithm. The WFQ scheduler associates a weight to each connection session; all
connection sessions share the routerŠs bandwidth in proportion to their weights.
The transmission rate of each session depends on the combination of its weight and
the summation of all weights. The virtual time V(t) is defined as follows:

V(t) =
∫ t

0

1
∑j∈A(τ) wj

dτ

where wj is the weight of task j and A(τ) is the set of active tasks at time τ. Thus,
virtual time progresses at a rate inversely proportional to the summation of all
weights. That is, the more sessions in the system, the slower transmission rate each
session gets. Worst-case Fair Weighted Fair Queuing (WF2Q) [8] is an extension of
WFQ that prevents a task from getting executed faster than expected in a perfect
fair share scheduler. WF2Q+ [57] is an improved version of WF2Q, having a lower
complexity. Straightforward extensions are derived for hierarchical systems [57]:
H-GPS, H-WF2Q+, etc.

Proportional Share algorithms

Proportional-share algorithms have been adapted to solve specific scheduling la-
tency problems facing soft real-time applications such as multimedia. Proportional-

20

sharing of CPU is similar to flow-based packet schedulers such as WF2Q, because
awareness of throughput is used to make scheduling decisions. While the goal of
most proportional-share algorithms is maintaining constant rate (i.e. a fluid model)
over any interval, the CBS algorithm relaxes the fairness constraint, only ensuring
that enough proportion is received at deadlines.

Two multimedia schedulers are built on WFQ: SMART [58] and BERT [59].
SMART prioritizes a task by two parameters: priority and biased virtual finish-
ing time (BVFT). The scheduler always chooses the task with the highest priority.
When multiple tasks are at the same priority level, the scheduler tries to satisfy as
many BVFTs as possible. BERT is an implementation of WF2Q plus a cycle stealing
mechanism While WF2Q provides proportional sharing, the cycle stealing mecha-
nism provides a flexible way for urgent tasks to meet their deadlines when their
demands exceed their shares.

The Earliest Eligible Virtual Deadline First (EEVDF) [60] algorithm is another
proportional-share algorithm that employs virtual time. The EEVDF algorithm
puts all aperiodic jobs into the same queue and assigns a deadline for each job.
According to weight wi, release time ti

0 and execution time rk, the virtual eligible
time Zk and virtual deadline Dk of a task are computed using equations presented
in [60] and summarized as follows: Z1 = V(ti

0); Dk = Zk + r(k)/wi; Zk+1 = Dk.
The virtual time in EEVDF is identical to the definition in WFQ.

Further proportional-share algorithms are Borrowed-virtual-time (BVT) [61],
Start-Time Fair Queuing (SFQ) [62], Lottery scheduling [63], Stride scheduling [64].

The Completely Fair Scheduler (CFS) is a variant of SFQ that has been adopted
as the default scheduler in the Linux kernel. Further detail on this scheduler are
contained in the deliverable D4b.

3.4 Servers for Multi Core Systems

While there are many existing works addressing the uni-processor case, only a few
results deal with multiprocessor case.

Adaptations of uniprocessor servers: M-CBS, M-TBS and M-CASH

Baruah et al. presented in [65, 66] the M-CBS algorithm, extending CBS to support
identical multicore systems. Each server is characterized by a period Pi and a share
Ui, which is required to be less than 1. An application is guaranteed to complete
within a margin of Pi from the time it would complete on a fully dedicated pro-
cessor. The main drawback of this approach is that it is designed for applications
composed by a single task contained in a single server.

Baruah and Lipari also proposed in [67] a multiprocessor version of the TBS al-
gorithm (M-TBS). This server is able to fully exploit a multiprocessor system, being
able to reclaim for the service of aperiodic jobs, the bandwidth that can not be used
to satisfy hard real-time requirements of periodic tasks under global EDF schedul-
ing. It suffers from the same design issues described before for the M-CBS algo-
rithm. In [68], Kato and Yamasaki considered TBS too, with the aim of improving
the response time of aperiodic activities in partitioned EDF scheduled multiproces-
sor systems.

In [69], Pellizzoni and Caccamo extended the CASH algorithm to uniform mul-
tiprocessor platforms. The M-CASH algorithm provides M-CBS with the capability
of exploiting the computational resources left unused by the various servers. The
reclaiming mechanism is based on a queue of unused capacity chunks and dead-
lines.

21

Multiprocessor periodic resource models

Shin et al. proposed in [70] a multiprocessor periodic resource model to describe
the computational power supplied by a parallel machine. Their model is repre-
sented by the triplet 〈Π, Θ, m′〉 meaning that the computational resource provided
by a multiprocessor constituted by m′ processors is Θ every period Π. Indeed this
interface is extremely simple. Nonetheless we highlight two drawbacks of this ab-
straction.

1. The same periodicity Π is provided to all the tasks scheduled on the same
virtual multiprocessor. This can lead to a quite pessimistic interface design. In
fact the period of the interface will tipycally be imposed by the shortest period
task, with a resulting waste of computational capacity due to the overhead.
We believe that an approach that reserves time with different periodicity is
better capable to answer to the needs of an application.

2. Considering the supplied resource Θ cumulatively among all the processors
leads to a more pessimistic analysis than considering separately the contribu-
tion of each VP. This is due to the consideration that the worst-case analysis
in multiprocessor systems occurs when the available processors allocate re-
source at the same time.

Leontyev and Anderson proposed in [71] a very simple, though effective, in-
terface for the multiprocessor platform based on the only bandwidth. The authors
suggest that a bandwidth requirement w > 1 is best allocated by an integer num-
ber bwc of dedicated processors plus a fraction of w− bwc allocated onto the other
processors. This choice is supported by the evidence that a given amount of com-
puting speed is better exploited on the minimum possible number of processors.
However there are some circumstances where this approach is not the best.

1. As the authors themselves show by an example [71], there are some hard real-
time tasks sets that can miss a deadline if the suggested policy is adopted,
whereas they can meet the deadline if a different bandwidth allocation strat-
egy is used.

2. If the physical platform already accommodated other applications, then a
whole processor may be unavailable. Hence, in this case, we cannot allocate
a dedicated processor to an application, but only a fraction of it that cannot
possibly be expressed just by an unused bandwidth.

Other servers

Two server implementations based on, respectively, Pfair and ERfair scheduling
have been presented in [72].

A proportional-share algorithm for multiprocessor systems is the Surplus Fair
Scheduling (SFS) proposed by Chandra et al. in [73].

22

Bibliography

[1] Z. Deng and J. Liu, “Scheduling real-time applications in an Open environ-
ment,” in Proceedings of the Eighteenth Real-Time Systems Symposium, (San Fran-
cisco, CA), pp. 308–319, IEEE Computer Society Press, December 1997.

[2] A. K. Mok, Fundamental Design Problems of Distributed Systems for The Hard-
Real-Time Environment. PhD thesis, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, 1983. Available as Technical Report
No. MIT/LCS/TR-297.

[3] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-real-time
sporadic tasks on one processor,” in Proceedings of the 11th Real-Time Systems
Symposium, (Orlando, Florida), pp. 182–190, IEEE Computer Society Press,
1990.

[4] A. Mok, X. Feng, and D. Chen, “Resource partition for real-time systems,” in
7th IEEE Real-Time Technology and Applications Symposium (RTAS ’01), pp. 75–
84, IEEE, May 2001.

[5] X. A. Feng and A. Mok, “A model of hierarchical real-time virtual resources,”
in Proceedings of the IEEE Real-Time Systems Symposium, pp. 26–35, IEEE Com-
puter Society, 2002.

[6] X. Feng, Design of Real-Time Virtual Resource Architecture for Large-Scale Embed-
ded Systems. PhD thesis, Department of Computer Science, The University of
Texas at Austin, 2004.

[7] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-
time systems,” in Proceedings of the Real-Time Systems Symposium, (Madrid,
Spain), pp. 3–13, IEEE Computer Society Press, December 1998.

[8] J. Bennett and H. Zhang, “WF2Q: Worst-case fair queueing,” in Proceedings of
IEEE INFOCOM’96, pp. 120–128, March 1996.

[9] G. Lipari and S. Baruah, “Greedy reclaimation of unused bandwidth in
constant-bandwidth servers,” in Proceedings of the EuroMicro Conference on
Real-Time Systems, (Stockholm, Sweden), pp. 193–200, IEEE Computer Society
Press, June 2000.

[10] G. Lipari and E. Bini, “Resource partitioning among real-time applications,” in
Proceedings of the EuroMicro Conference on Real-time Systems, (Porto, Portugal),
pp. 151–160, IEEE Computer Society, 2003.

[11] G. B. M. Caccamo and L. Sha, “Capacity sharing for overrun control,” in Pro-
ceedings of 21th IEEE RTSS, (Orlando, Florida), pp. 295–304, 2000.

23

[12] G. B. M. Caccamo and D. Thomas, “Efficient reclaiming in reservation-based
real-time systems with variable execution times,” IEEE Transactions on Com-
puters, vol. 54, February 2005.

[13] P. B. L. Marzario, G. Lipari and A. Crespo, “Iris: A new reclaiming algo-
rithm for server-based real-time systems,” in Proceedings of the 10th IEEE RTAS,
(Toronto, Canada), 2004.

[14] T. B. S. Banachowski and S. A. Brandt, “Integrating best-effort scheduling into
a real-time system,” in Proceedings of the 25th IEEE Real-Time Systems Sympo-
sium, December 2004.

[15] M. Spuri, G. Buttazzo, and F. Sensini, “Robust aperiodic scheduling under
dynamic priority systems,” in Proceedings of the Real-Time Systems Symposium,
(Pisa, Italy), pp. 210–221, IEEE Computer Society Press, 1995.

[16] J. S. Z. Deng, J.W.-S. Liu, “A scheme for scheduling hard real-time applica-
tions in open system environment,” in Ninth Euromicro Workshop on Real-Time
Systems, (Toledo, Spain), November 1997.

[17] J. W. S. Liu, Real-Time Systems. Upper Saddle River, New Jersey 07458:
Prentice-Hall, Inc., 2000.

[18] G. Buttazzo and F. Sensini, “Optimal deadline assignment for scheduling soft
aperiodic tasks in hard real-time environments,” IEEE Transactions on Comput-
ers, vol. 48, pp. 1035–1052, October 1999.

[19] C. L. S. A. Brandt, S. Banachowski and T. Bisson, “Dynamic integrated
scheduling of hard real-time, soft real-time and non-real-time processes,” in
Proceedings of the 24th IEEE Real-Time Systems Symposium, pp. 396–407, Decem-
ber 2003.

[20] T. C. G. L. S. B. Luigi Palopoli, Luca Abeni, “Weighted feedback reclaiming
for multimedia applications,” in 6th IEEE Workshop on Embedded Systems for
Real-Time Multimedia, October 2008.

[21] L. A. Sanjoy Baruah, Giuseppe Lipari, “Shrub: Shared reclamation of unused
bandwidth,” tech. rep., Scuola Superiore Sant’Anna, http://retis.sssup.it/ li-
pari/papers/shrub_tech_report_jul_08.pdf, 2008.

[22] L. A. M. C. Giorgio Buttazzo, Giuseppe Lipari, Soft Real-Time Systems: Pre-
dictability vs. Efficiency. Plenum Publishing Co. (Series in Computer Science),
2005.

[23] C. Lin and S. A. Brandt, “Improving soft real-time performance through better
slack reclaiming,” in Proceedings of the 26th IEEE RTSS, pp. 410–421, 2005.

[24] L. Nogueira and L. M. Pinho, “Capacity sharing and stealing in dynamic
server-based real-time systems,” in 15th International Workshop on Parallel and
Distributed Real-Time Systems, March 2007.

[25] T. M. Ghazalie and T. Baker, “Aperiodic servers in a deadline scheduling envi-
ronment,” Real-Time Systems: The International Journal of Time-Critical Comput-
ing, vol. 9, 1995.

24

[26] M. Spuri and G. Buttazzo, “Scheduling aperiodic tasks in dynamic priority
systems,” Real-Time Systems: The International Journal of Time-Critical Comput-
ing, vol. 10, no. 2, 1996.

[27] G. Lipari and G. Buttazzo, “Scheduling real-time multi-task applications in an
open system,” in Proceedings of the EuroMicro Conference on Real-Time Systems,
(York, UK), IEEE Computer Society Press, June 1999.

[28] G. Lipari and S. Baruah, “Efficient scheduling of real-time multi-task applica-
tions in dynamic systems,” in Proceedings of the Real-Time Technology and Ap-
plications Symposium, (Washington, DC), pp. 166–175, IEEE Computer Society
Press, May–June 2000.

[29] G. Lipari, J. Carpenter, and S. Baruah, “A framework for achieving inter-
application isolation in multiprogrammed, hard real-time environments,” in
Proceedings of the Real-Time Systems Symposium, (Orlando, FL), IEEE Computer
Society Press, November 2000.

[30] Z. Deng, J. Liu, L. Zhang, M. Seri, and A. Frei, “An Open environment for real-
time applications,” Real-Time Systems: The International Journal of Time-Critical
Computing, vol. 16, pp. 155–186, May 1999.

[31] G. Lipari and S. Baruah, “A hierarchical extension to the constant bandwidth
server framework,” in Proceedings of the Real-Time Technology and Applications
Symposium, (Taipei, Taiwan), IEEE Computer Society Press, May–June 2001.

[32] G. L. Luca Abeni, Claudio Scordino, “Serving non real-time tasks in a reserva-
tion environment,” in Real-Time Linux Workshop, Nov. 2008.

[33] J. Strosnider, J. Lehoczky, and L. Sha, “The deferrable server algorithm for
enhancing aperiodic responsiveness in hard-real-teime environments,” IEEE
Transactions on Computers, vol. 44, January 1995.

[34] B. Sprunt, L. Sha, and J. P. Lehoczky, “Scheduling sporadic and aperiodic
events in a hard real-time system,” Tech. Rep. ESD-TR-89-19, Carnegie Mel-
lon University, 1989.

[35] B. Sprunt, Aperiodic Task Scheduling for Real-Time Systems. PhD thesis, Dept. of
Electrical and Computer Engineering, Carnegie Mellon University, 1990.

[36] L. Sha, J.P.Lehoczky, and R. Rajkumar, “Solutions for some parctical problems
in prioritised preemptive scheduling,” in Proceedings IEEE Real-Time Systems
Symposium, pp. 181–191, 1986.

[37] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves: operat-
ing system support for multimedia applications,” in Proceedings of the Interna-
tional Conference on Multimedia Computing and Systems, Boston, MA, USA, May
15–19, 1994 (IEEE, ed.), (1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA), pp. 90–99, IEEE Computer Society Press, 1994.

[38] J. Lehoczky, L. Sha, and J. Strosnider, “Enhanced aperiodic responsiveness
in hard real-time environments,” in Proc. of Real-Time Systems Symposium,
pp. 261–270, 1987.

25

[39] B. Sprunt, J. Lehoczky, and L. Sha, “Exploiting unused periodic time for ape-
riodic service using the extended priority exchange algorithm,” in Proceedings
of the Real-Time Systems Symposium, (Huntsville, Alabama), pp. 251–258, IEEE,
December 1988.

[40] J. P. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for scheduling soft-
aperiodic tasks fixed-priority preemptive systems,” in Proceedings of the 13th
Real-Time Systems Symposium, pp. 110–123, December 1992.

[41] K. W. T. R. I. Davis and A. Burns, “Scheduling slack time in fixed priority
preemptive systems,” in Proceedings of the 14th Real-Time Systems Symposium,
pp. 222–231, 1993.

[42] J. L. T.S. Tia and M.Shankar, “Algorithms and optimality of scheduling aperi-
odic requests in fixed-priority preemptive systems,” Journal of Real-Time Sys-
tems, 1995.

[43] G. Bernat and A. Burns, “Multiple servers and capacity sharing for imple-
menting flexible scheduling journal = Journal of Real-Time Systems, year =
2002, volume = 22, number = 1-2, pages = 49–75„”

[44] R. Davis and A. Wellings, “Dual priority scheduling,” in IEEE Real-Time Sys-
tems Symposium, pp. 100–109, Dec. 1995.

[45] G. Bernat and A. Burns, “Combining (n, m)-hard deadlines and dual priority
scheduling,” in Proceedings of the IEEE Real-Time Systems Symposium, pp. 46–57,
1997.

[46] J. Regehr and J. A. Stankovic, “A framework for composing soft real-time
schedulers,” in Proceedings of the 22nd IEEE Real-Time Systems Symposium, (Lon-
don, UK), pp. 3–14, December 2001.

[47] B. Ford and S. Susarla, “Cpu inheritance scheduling,” in Proceedings of the Sec-
ond Symposium on Operating Systems Design and Implementation, (Seattle, WA),
October 1996.

[48] D. Isovic and G. Fohler, “Efficient scheduling of sporadic, aperiodic, and pe-
riodic tasks with complex constraints,” in Proceedings of the Real-Time Systems
Symposium, (Orlando, FL), IEEE Computer Society Press, November 2000.

[49] G. Fohler, T. Lennvall, and G. Buttazzo, “Improved handling of soft aperiodic
tasks in offline scheduled real-time systems using total bandwidth server,” in
In 8th IEEE Int. Conf. on Emerging Technologies and Factory Automation, (Nice,
France), October 2001.

[50] G. Buttazzo and J. Stankovic, “Red: Robust earliest deadline scheduling,” in
Third International Workshop on Responsive Computing Systems, (New Hamp-
shire, USA), September 1993.

[51] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. second ed., 2005.

[52] G. Koren and D. Shasha, “Dover: An optimal on-line scheduling algorithm for
overloaded real-time systems,” 1992.

[53] S. Baruah and J. Haritsa, “Scheduling for overload in real-time systems,” IEEE
Transactions on Computers, vol. 46, pp. 1034–1039, September 1997.

26

[54] M. C. D.C. Thomas, S. Gopalakrishnan and C. Lee, “Spare cash: Reclaiming
holes to minimize aperiodic response times in a firm real-time environment,”
in Proceedings of the EuroMicro Conference on Real-Time Systems, (Palma de Mal-
lorca, Spain), July 2005.

[55] M. C. G. C. Buttazzo, G. Lipari and L. Abeni, “Elastic scheduling for flexible
workload management,” IEEE Transactions on Computers, vol. 51, pp. 289–302,
March 2002.

[56] S. Goddard and L. Xu, “A variable rate execution model,” in Proceedings of the
16th Euromicro Conference on Real-Time Systems, pp. 135–143, July 2004.

[57] J. C. Bennett and H. Zhang, “Hierarchical packet fair queueing algorithms,”
IEEE/ACM Transactions on Networking, vol. 5, pp. 675–689, Oct 1997.

[58] J. Nieh and M. Lam, “The design, implementation and evaluation of smart: A
scheduler for multimedia applications,” in Proceedings of the 16th ACM Sympo-
sium on Operating Systems Principles, October 1997.

[59] P. L. Bavier, A. and M. D., “Bert: A scheduler for best effort and real-time
tasks,” tech. rep., Department of Computer Science, Princeton University,
Princeton, NJ, 1999.

[60] I. Stoica, H. Abdel-Wahab, K. Jeffay, J. Gherke, G. Plaxton, and S. Baruah,
“A proportional share resource allocation algorithm for real-time, time-shared
systems,” in Proceedings of the Real-Time Systems Symposium, (Washington, DC),
pp. 288–299, December 1996.

[61] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time (bvt) scheduling: Sup-
porting latency-sensitive threads in a general-purpose scheduler,” in Proceed-
ings of the 17th ACM Symposium on Operating Systems Principles, December
1999.

[62] P. Goyal, X. Guo, and H. Vin, “A hierarchical cpu scheduler for multimedia
operating systems,” in Proceedings of the Second Symposium on Operating Sys-
tems Design and Implementation (OSDI’96), (Seattle, Washington), pp. 107–122,
October 1996.

[63] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling: Flexible
proportional-share resource management,” in Proceedings of the First Sympo-
sium on Operating System Design and Implementation, 1994.

[64] C. A. Waldspurger and W. E. Weihl, “Stride scheduling: Deterministic
proportional-share resource management,” Tech. Rep. Technical Memoran-
dum, MIT/LCS/TM–528, Laboratory for Computer Science, Massachusetts
Institute of Technology, 1995.

[65] S. Baruah and G. Lipari, “Executing periodic jobs in a multiprocessor
Constant-Bandwidth Server implementation,” in Proceedings of the EuroMicro
Conference on Real-Time Systems, (Catania, Sicily), pp. 109–117, IEEE Computer
Society Press, July 2004.

[66] S. Baruah, J. Goossens, and G. Lipari, “Implementing constant-bandwidth
servers upon multiprocessor platforms,” in Proceedings of the Eighth IEEE Real-
Time and Embedded Technology and Applications Symposium, (San Jose, Califor-
nia), pp. 154–163, IEEE Computer Society Press, September 2002.

27

[67] S. Baruah and G. Lipari, “A multiprocessor implementation of the Total Band-
width Server,” in Proceedings of the 18th International Parallel and Distributed
Processing Symposium, (Santa Fe, New Mexico), IEEE Computer Society Press,
April 2004.

[68] S. Kato and N. Yamasaki, “Scheduling aperiodic tasks using total bandwidth
server on multiprocessors,” in Proceedings of the 6th IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing (EUC2008), 2008.

[69] R. Pellizzoni and M. Caccamo, “M-cash: A real-time resource reclaiming algo-
rithm for multiprocessor platforms,” Real-Time Systems, vol. 40, no. 1, pp. 117–
147, 2008.

[70] I. Shin, , A. Easwaran, and I. Lee, “Hierarchical scheduling framework for vir-
tual clustering multiprocessors,” in Proceedings of the 20th Euromicro Conference
on Real-Time Systems, (Prague, Czech Republic), pp. 181–190, July 2008.

[71] H. Leontyev and J. Anderson, “A hierarchical multiprocessor bandwidth
reservation scheme with timing guarantees,” in Proceedings of the 20th Euromi-
cro Conference on Real-Time Systems, (Prague, Czech Republic), pp. 191–200,
July 2008.

[72] A. Srinivasan, P. Holman, and J. Anderson, “Integrating aperiodic and recur-
rent tasks on fair-scheduled multiprocessors,” in Proceedings of the EuroMicro
Conference on Real-Time Systems, (Vienna, Austria), pp. 19–28, IEEE Computer
Society Press, June 2002.

[73] A. Chandra, M. Adler, P. Goyal, and P. Shenoy, “Surplus fair scheduling: A
proportional-share cpu scheduling algorithm for symmetric multiprocessors,”
in Proceedings of the Fourth Symposium on Operating System Design and Implemen-
tation (OSDI 2000), San Diego, CA, October 2000.

28

	Contents
	Introduction
	The Generic Resource Reservation Framework
	Open environments
	State Diagram
	Design considerations
	Reclaiming of unused bandwidth
	Aggressive reclaiming

	Existing solutions
	Dynamic Priority Servers for Single Core Systems
	Fixed Priority Servers for Single Core Systems
	Other Servers for Single Core systems
	Servers for Multi Core Systems

	Bibliography

