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Abstract—This paper proposes a solution for the FMTV Ci
verification challenge related to the timing and schedulabity O
analysis of an engine management system to be executed on L
a shared-memory multi-core platform. The application conssts Tir
of statically partitioned tasks, each one composed of multie -
runnables that are executed according to a read-compute-vite T [ [ ‘ ‘ [
policy, where the memory labels required by a runnable are ‘ ‘ ‘ ‘ L T ‘
loaded from memory before starting its execution, and they ee all D;
stored after the runnable completes its execution. Tasks nyabe
either fully preemptive or only partially at runnable bound aries.
The contribution of the paper is threefold. First, we presen a
tight schedulability analysis for this mixed-preemption tting,
neglecting memory accesses (Challenge I). Then, memory ass
times and arbitration delays are included to the schedulabity . . . )
analysis, addressing Challenge 1. Finally, Challenge lllis tackled  Of 7i, with 1 < r < ;. The execution time of; ,. is denoted
proposing different approaches to map the labels to localighal asC; .. Therefore,
memories so as to minimize the end-to-end latency of seledte
event chains. C; = Z Cir. ()

r€[1,vi]

Fig. 1. Notational model for tasks and runnables.

|. INTRODUCTION

The purpose of this paper is to present a brief overview ¥fe also denote ag’;, the cumulative execution time of
a solution to the FMTV verification challenge. The challemgdunnablesr; i, ..., 7, i.e.,
proposed are: _ o Cir= Z Cir. (2
« Challenge Icalculate tight end-to-end latencies ignoring
memory accesses and arbitration o
« Challenge Il:calculate tight end-to-end latencies includ-Some of these parameters are exemplified in Figurel for a
ing memory access and arbitration accesses generic task;.
° Cha”enge |||opt|m|ze end_to_end |atencies by mapp|n? Runnables are basic workload Units, whose execution fol-
the labels among the local and global memories ows a read-compute-write policy. The computational pdrt o

The rest of the paper is organized as follow. Section 2 intrB-runnable cannot start before all its required labels age pr
duces the terminology and notation used in the paper. $ect/gaded from memory. Also, no label will be stored to memory
3 presents the worst-case response time analysis devetope?eoré the completion of the runnable. The preemption type
solve Challenge I. Section 4 describes the approach applied : May be either preemptive or cooperative. Preemptive tasks
tackle memory access and arbitration accesses (Challénge'T'&y always preempt lower priority tasks, while cooperative

Finally Section 5 presents different solutions for Chaglemil. (@Sks may preempt a lower priority one only at runnable
boundaries. Preemptive tasks are assumed to have always a

[l. TERMINOLOGY AND NOTATION higher priority than any cooperative task.

In this section, we introduce the terminology and notation The execution time of a runnable;, is computed as
used throughout the paper, considering the information &B;, = n/,./f, wheren/, is an upper-bound on the number
stracted from the Amalthea model. Each taskis specified of instructions specified by the Weibull estimators for the
by a tuple C;, D;, T;, P;, PT;), where C; is the worst-case considered runnable, assuming one instruction-per-qy.elg
execution time (WCET)]); is the relative deadlinel; is the IPC = 1), and f is the core frequency.
period, P; is the priority, andPT; is the preemption type. The platform is assumed to comprise four identical cores,
Every periodT;, each task releases a job composedypf with tasks statically partitioned to the cores and no migrat
subsequent runnables, wherg. represents the'" runnable support.
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write Lye read L7e% write L to either preemptive or cooperative tasks. Since Challénge
f \ \ allows neglecting memory delays, we can focus uniquely on

; e T . the execution times of tasks and runnables.
GG L ]

/ T; Ri,'r‘ . .
read L' A. Analysis for Preemptive Tasks

_— ] - | " _ _ _
Fig. 2. Worst-case delay propagation in a runnable sutmchai According to the considered model, preemptive runnables

can only be preempted by higher priority preemptive
runnables, and they can always preempt any lower prior-
ity task. Therefore, a preemptive task will never expergenc

In this section, we present a detailed analysis of Challéngeany blocking delay due to lower priority (preemptive or
i.e, a solution tacalculate tight end-to-end latencies ignoringcooperative) tasks. Hence, the response time for preeenptiv
memory accesses and arbitratiofhe latencies of interest aretasks can be computed adapting the classic response time
those of selected effect chains, where an effect chain isamalysis for arbitrary deadlines presented’in [2]. Theteahyi
sequence of producer/consumer runnables working on shadedline model is used instead of the simpler analysis for
labels. It is worth noting that effect chains do not have eonstrained deadlines because there are configurationg whe
blocking semantic, i.e., tasks and runnables are alwaygeacthe response time of a task may be later than the activation of
and periodically activated, independently on other rutemmb the subsequent job of the same task, i.e., it mayrbe- T;.
and/or external events. What is interesting to analyze és tnder these conditions, the maximum response time of a task
maximum propagation delay from an initial event to the finaé not necessarily given by the first instance released Hfeer
runnable involved in the effect chain. An effect chain isynchronous arrival of all higher priority tasks (also edll
triggered by an initial event, which needs to be processed bitical instant), but may be due to later jobs.

one or more runnables using a read/execute/store executiopor each task;, the analysis requires checking multiple jobs

model. A first runnabler; , may read a label,, compute yntil the end of the level-busy period, i.e., the maximum

the necessary instructions, and store a result on a IBbel consecutive amount of time for which a processor may be

which will be later read by another runnabig, following in continuously executing tasks of prioriti; or higher. The

the Chain, and so on until the last runnable in the chain. Thﬁ]gest Level active period can be calculated by fixed_point

end-to-end propagation delay is the maximum time that m@¥ration of the following relation, starting with; = C;:

elapse between the initial event and the completion of teie la

runnable in the chain. L; = Z [ﬁw C;. (4)
It is easy to observe that an upper bound of such a delay is j:P;>P;

given by the sum of the propagation delays for each indi\Jidu.iah

runnable in the chain[1]. In particular, consider an effect

sub-chain where a runnable . writes a label L which is K {ﬁw . (5)

then read by another runnabte,. The worst-case sub-chain ’

IIl. M EMORY-OBLIVIOUS ANALYSIS

e number ofr;’s instances to check are therefore:

T;

propagation delay is found whem . storesL right afterr; The finishing time of thek-th instance & € [1,K;]) of

started loading it, as shown in Figure 2. Under this sitwtio,;nnapie 7. “in the leveli busy period can be iteratively

the effect is not propagated until the next instance;qf may computed as

start executing in the subsequent peribd and complete its .

execution after at mos®; ,, time-units, whereR; ,, represents & i —

the worst-case response time of runnablg. Therefore, an fir = ‘ [Tj W Cit(k-1)Ci+Cir, (6)

upper bound on the overall end-to-end propagation delay of P> Py

an effect chainC' can be computed as where the first term in the sum accounts for the higher pyiorit

interference, the second term accounts for(thel) preceding
I(EC) = Z (Ti + Rir), ®3) jobs of 7;, and the last term considers the contribution of the
Tir €BC k-th job limited tor; , and its preceding runnables.

where the sum is extended over all runnables belonging toThe response time of the-th instance ofr; . can then be

the effect chain. Note that in case the effect chain includeasily found subtracting its arrival time:

two consecutive runnables that belong to the same task, it is X k

sufficient to consider only the delay contribution of theefat Ry, = fi, — (k=T (")

one. Finally, the worst-case response time of runnable can be

To compute the upper bound of Equatldn 3, it is necessapuind by taking the maximum among &l; jobs in the levek
to compute the worst-case response tifye of each runnable pysy period:

7;,» involved in the chain. To this purpose, we will hereafter Ri, = max {RF 1. 8)
provide a tight response-time analysis of runnables béhong © keLE]




B. Analysis for Cooperative Tasks TABLE |
) . . END-TO-END LATENCIES IGNORING MEMORY ACCESSE$u’ S)
The analysis for cooperative tasks is somewhat more com-

plicated, since it needs to take into account (i) the blogkii Core Task WCRT Deadline U
delays due to lower priority cooperative tasks that can be ISR _10 30.34 700.0 0.04
preempted only at runnable boundaries; (ii) the interfeeen ISR 5 288.52 9000.0 0.33
due to higher priority cooperative tasks that can preempt ISR_6 319.47 1100.0 0.35
the considered task only at runnable boundaries; (iii) the ISR 4 685.27 1500.0 0.60
interference of preemptive tasks that may always preengst e CORED ISR 8 1308.62 | 1700.0 0.78
within a runnable. To tackle this problem, we will modify ISR 7 2652.99 | 4900.0 0.84
and merge the analysis for limited-preemption systems wijth ISR 11 4266.89 | 5000.0 0.90
Fixed Preemption Points (FPP) and for Preemption Threshold ISR 9 4483.08 | 6000.0 0.93

Scheduling (PTS), both summarized fin [3]. The outcome w| Task 1ms 764.35 1000.0 0.76

I

be a necessary and sufficient response-time analysis for tfeOREL Angle_Sync | 5994.08 | 6660.0 0.97
considered mixed preemptive-cooperative task model. Task 2ms 262.65 2000.0 0.13

Under this model, a preemption threshold is assigned |to Task 5ms 1194.47 | 5000.0 0.31
cooperative tasks. This priority is higher than that of any Task 20ms 16870.06| 20000.0 0.84
cooperative task, but lower than that of any preemptivestask CORE2 | Task 50ms 36776.80| 50000.0 0.90
When a cooperative task is executing one of its runnables Task 100ms | 99719.82| 100000.0 | 0.99
its nominal priority P; is raised to the threshold;, so that Task 200ms | 99845.02| 200000.0 | 0.99
cooperative tasks cannot preempt it. The nominal priosty |i Task 1000ms| 99973.85| 1000000.0| 0.99
restored when the runnable is completed, allowing coojperat ISR 1 35.05 9500.0 0.003
preemptions from higher priority tasks. ISR 2 52.8 9500.0 0.005

As with preemptive tasks, also for cooperative tasks it j<CORES ISR 3 76.73 9500.0 0.008
necessary to consider multiple jobs within a busy windoyyv. Task 10ms 9992.16 | 10000.0 0.99
However, the busy window must also include the blockin Effect Chain End to End Latency
due to lower priority tasks. The longest Leviekctive period | Effect Chain 1 13378.124
can be calculated adding a blocking factor to the recurrinGEffect Chain 2 149691.134
relation of Equation[{4): Effect Chain 3 72196.007

L=s+ ¥ [Z]e ©)
PP Y than the preemption threshold of any cooperative task. To

Since a task can only be blocked once by lower prioritgompute this last interfering term, we compute the higher

instancesp3; corresponds to the largest execution time amorﬁﬁiority instances that may arrive from the critical indtantil
lower priority runnabld the finishing time, and subtract those that arrived befoee th

starting time.
Bi = n})ax {Cj,r}-

J,r: P <P; k sk
. b =5t +Ci, o S (12
Equation [5) can then be used to compute the number d?“ sir TG J;Z;e({ Tj-‘ <{Tj J+ )) ¢ (12)
instances to check in the busy window. st

The starting times” . of the k-th instance of runnable,, Equation [¥) and{8) can then be identically used to compute
can be computed taking into consideration the blocking tin{Be worst-case response tinig . of the considered runnable.

B;, the interference produced by higher priority tasks before Since the deadlines are missed and the utilization is over
7,» can start, the preceding (k-1) instancesof and the 1 in almost all cores, we have reduced the worst case exe-

execution time of the preceding runnablesrpf: cution time of some runnables in order to make the system
. ’ schedulable, Tablé | shows the results of the first challenge
Sir -
sy, = Bi+ Z ({ T J + 1) Ci+(k=1)Ci+Cir1. IV. MEMORY-AWARE ANALYSIS
§:P;>P; J

11) In this section, we address Challenge I, including memory
The finishing timefi’fr is calculated by adding to the startin
time s¥,, the execution time of the considered runnable,,

along with the interference of the tasks that can preempt
i.e., the preemptive tasks which have a nominal priorityhkig

and arbitration accesses in the computation of the enddo-e
Yatencies. We follow an identical approach as the one destri
in the previous section, inflating the runnable executiores
C;» with the maximum possible interference produced by
memory-related delay.
1Since the lower priority task must have already arrived teetbe critical W.e assume all labels be loaded/stored to glObal memo_ry’
instant, the actual blocking term is actually an infinitesiramount smaller. 1€@Ving the improvements related to the use of local meraorie
We neglect infinitesimal amounts to simplify the formula. to Challenge Il discussed in the next section. The delay for



a global memory access is of 8 cycles for crossbar traversing BRIVATE 8593 S'Zzez(lKB)
and 1 cycle for the memory access. Since conflicting memory SHARED | 1690 950
accesses are assumed to be arbitrated in a First-In-Firtst-O UNUSED || 17 -
fashion, the memory access time has to be multiplied by the ABLETI

number of coresn that may concurrently access the global LABELS

memory, i.e., four cores in our setting: = 4. The overall
memory access delay can then be found by multiplying the
single access delay by the number of reaisand writesn"’

performed by the considered runnable. Therefore, thetregul |
WCET C;,. for a runnable can be computed as: 2500

Cir = (01 )+ (84 (1xm)*n®) + (84 (1xm)xnWW) (13)

# Labels Labels size (KBytes)

M Private Labels

m shared Labels

s oo
=]

The multiplying factorm accounts for the maximum possi- 250
ble interference by all cores in the system, that is, we assu| ™

6
that cores continuously generate interfering traffic. Tihig o
pessimistic assumption that may be improved by accounti * II : II I

for data access patterns of target applications, whichrawerk CORE0 COMEL  COREZ  CORE CORED  COREL  CORE2  CORES
in the Amalthea model. In particular, a possible solution ca
be found along the lines of the work presented by Nelis et al. Fig. 3. Distribution of labels on runnables/cores

in [4], where a method is introduced to model the memory

access patterns of a task considering the contention on a

shared bus (and not a crossbar, as in the considered mod#l)GRAM (256 KB). For this reason, and for the sake of
Other approaches that could be used to tackle this problem simplicity, we do not consider memory constraints in our
presented in[]5] and_[6]. However, the computational cost a@halysis. Enhancing our model and approach includingdichit
these solutions is exponential in the number of tasks and tmemory is left as a future work. Moreover, we assume that alll
granularity of memory patterns, making it difficult to applylabels can be accessed with a single memory read, neglecting

for the considered setting. the fact that there are labels which are larger than the bus
width (i.e., occupy 64 or 128 bits against a 32-bit bus), lkeenc
V. MEMORY MAPPING STRATEGIES more consecutive memory accesses may be required for a label

As requested in Challenge I1l, this section discusses how{{gnsfer. However, the proposed methodology can be easily

optimize end-to-end latencies by means of a suitable mgppfitended to deal with this issue.
of the labels among the local and global memories. BeforeFor the PRIVATE labels, an optimal choice seems to map
tackling this challenge, it is first necessary to questioa tthem to the local memory of the core that exclusively acaesse
notion of “optimality” for this setting. As we will show in them, because the latency of local accesses to LRAM is always
this section, a given label-to-memory mapping can reduéignificantly smaller than that to GRAM (1 cycle vs. 8+1
end-to-end latencies for certain effect chains at the cost @/cles, respectively). Since there are no constraintsefotal
increasing those of other chains, making it difficult to takg'emory size with relation to the overall labels footpringwn
globally optimal decisions. ing local labels to other (local or global) memories wouldyon

In a first step, we performed a preliminary analysis of tngcrease the resulting latencies. Moreover, this cannssijpty
memory accesses performed by all runnables in the givéfdrade the delays on other cores, becauseremeoveda

Amalthea use-case. We categorized the data items (laelspptential source of contention. This is a quite known tegbei
three sets: when programming distributed Non-Uniform Memory Access

1) PRIVATElabels, which are exclusively accessed by on%\lUMA) s_ystems 1. . .
runnable: We defmgTLRAM as the tlr_ne spent in the worst case to
2) SHARED labels, which are accessed by multipl&C°c€SS @ private label stored in local memory, &agtay s
’ the worst-case time to access a label stored in shared memory

runnables (e.g., in a producer-consumer fashion); A ing th ; flicts in both :
3) UNUSEDIabels, which we ignore. ssuming the worst-case conflicts in both memories,

Table[dl shows the number of labels in the proposed model{Lran = (m — 1) * 1(FIFOqueue) + 1(memory) = m
and their total memory occupation in KBytes, while Figur
shows how many (PRIVATE and SHARED) labels are
accessed by (runnables assigned to) each core, and their wizere numbers are in clock cycles, andis the number of
in bytes (right). cores in the system. Note that time to access private labels
A first consideration is that there is potentially sufficienstore in the local memory may be lower thanwhen some
space to store all labels in any of the memories of the systeafithe other cores has no label to access in that local memory.
eiher in LRAMs (size 128 KB, according to the specifications)his would reduce the number of instances waiting in the FIFO

cram = 8(xbar)+1(memory)+(m—1)x1(FIFO) = 8+m,



gueue. In the extreme case where each LRAM contains onlyWe already identified possible future enhancements of our
private labels,Trrans = 1, since there will never be anyapproach, for all of the addressed challenges:

conflict in accessing local memories.

Moving to the mapping problem of shared labels, we could
use a similar approach to map each label to the LRAM “closer”
to the core that mostly accesses it. Unfortunately, thidccou
worsen the latencies of other runnables on the same core whe
accessing private labels stored in the local LRAM, because
now they may conflict with remote accesses from other cores.

The proposed heuristic is convenient if the accesses t@ghar 3)
labels are more frequent than those on private labels, so
that the increased conflicts in accessing private labels are

1) For Challenge I, we intend to explore how enlarging the
non-preemptive region beyond runnable boundaries may
improve the response time of the runnables, and related
effect chains, as shown i0l[8];

for Challenge II, we aim at exploring approaches based
on memory access pattern, such &5 [4], [&], [6], to
improve the computed memory access delays;

for Challenge lll, we intend to enhance our Java imple-
mentation with automatic placement functions to mini-
mize the end-to-end latencies of selected effect chains.

P)

compensated by the gain in loading a shared label from '—RAMnaIIy, and most importantly, we plan to apply co-scheutgli

instead of GRAM.

techniques recently proposed [ [9],[10] to avoid conftigti

~ |If memory access patterns are not taken into account, &:ess by design, significantly reducing the penalties due t
increase in the latency for private accesses is the same if W@mory accesses. We believe that the proposed use-case may

map one or all theshared labels to the local memory. As g g yseful benchmark to test the efficiency of co-scheduling
consequence, if we decide to map a single shared label ogfyroaches.

the LRAM of a core, paying the consequent private access
penalty, it would then make sense to map to that LRAM also
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according to which a local memory is either left free from any
shared label, or it is filled with the most frequently accesse
shared labels by the corresponding core.

From the Amalthea model, we know that several runnables
act in a producer-consumer fashion, forming multipiect
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