The Design of an EDF-scheduled Resource-sharing Open Environment*

Nathan Fisher

Abstract

We study the problem of executing a collection of indepen-
dently designed and validated task systems upon a common plat-
form comprised of a preemptive processor and additional shared
resources. We present an abstract formulation of the problem and
identify the major issues that must be addressed in order to solve
this problem. We present (and prove the correctness of) algorithms
that address these issues, and thereby obtain a design for an open
real-time environment in the presence of shared global resources.

Keywords: Open environments; Resource-sharing systems; Spo-
radic tasks; Critical sections; Earliest Deadline First; Stack Re-
source Policy.

1 Introduction

The design and implementation of open real-time envi-
ronments [13] is currently one of the more active research
areas in the discipline of real-time computing. Such open
environments aim to offer support for real-time multipro-
gramming: they permit multiple independently developed
and validated real-time applications to execute concurrently
upon a shared platform. That is, if an application is val-
idated to meet its timing constraints when executing in
isolation, then an open environment that accepts (or ad-
mits, through a process of admission control) this applica-
tion guarantees that it will continue to meet its timing con-
straints upon the shared platform. The open environment
has a run-time scheduler which arbitrates access to the plat-
form among the various applications; each application has
its own local scheduler for deciding which of its compet-
ing jobs executes each time the application is selected for
execution by the “higher level” scheduler. (In recognition
of this two-level scheduling hierarchy, such open environ-
ments are also often referred to as “hierarchical” real-time
environments.)

In order to provide support for such real-time multipro-
gramming, open environments have typically found it nec-

*This research has been supported in part by the National Sci-
ence Foundation (Grant Nos. CCR-0309825, CNS-0408996 and CCF-
0541056).

Marko Bertogna

Sanjoy Baruah

essary to place restrictions upon the structures of the in-
dividual applications. The first generation of such open
platforms (see, e.g., [22, 15, 7, 28, 14, 10] — this list is
by no means exhaustive) assumed either that each appli-
cation is comprised of a finite collection of independent
preemptive periodic (Liu and Layland) tasks [21], or that
each application’s schedule is statically precomputed and
run-time scheduling is done via table look-up. Further-
more, these open environments focused primarily upon the
scheduling of a single (fully preemptive) processor, ignor-
ing the fact that run-time platforms typically include addi-
tional resources that may not be fully preemptable. The
few [26, 12, 9] that do allow for such additional shared re-
sources typically make further simplifying assumptions on
the task model, e.g., by assuming that the computational
demands of each application may be aggregated and repre-
sented as a single periodic task, excluding the possibility to
address hierarchical systems.

More recently, researchers have begun working upon the
second generation of open environments that are capable of
operating upon more complex platforms. Two recent publi-
cations [11, 6] propose designs for open environments that
allow for sharing other resources in addition to the preemp-
tive processor. Both designs assume that each individual
application may be characterized as a collection of sporadic
tasks [23, 5], distinguishing between shared resources that
are local to an application (i.e., only shared within the appli-
cation) and global (i.e., may be shared among different ap-
plications). However, both approaches propose that global
resources be executed non-preemptively only, potentially
causing intolerable blocking among and inside the applica-
tions.

In this paper, we describe our design of such a second-
generation open environment upon a computing platform
comprised of a single preemptive processor and additional
shared resources. We assume that each application can be
modeled as a collection of preemptive jobs which may ac-
cess shared resources within critical sections. (Such jobs
may be generated by, for example, periodic and sporadic
tasks.) We require that each such application be scheduled
using some local scheduling algorithm, with resource con-
tention arbitrated using some strategy such as the Stack Re-
source Policy (SRP). We describe what kinds of analysis

such applications must be subject to and what properties
these applications must satisfy, in order for us to be able
to guarantee that they will meet their deadlines in the open
environment.

The remainder of this paper is organized as follows. The
rationale and design of our open environment is described
in Sections 2 and 3. In Section 2, we provide a high-level
overview of our design, and detail the manner in which
we expect individual applications to be characterized —
this characterization represents the inferface specification
between the open environment and individual applications
running on it — and in Section 3, we present the schedul-
ing and admission-control algorithms used by our open en-
vironment. In Section 4, we relate our open environment
framework to other previously-proposed frameworks. In
Section 5, we discuss in more detail how applications that
use global shared resources may be scheduled locally using
EDF with the Stack Resource Policy [3]. The companion
technical report [16] to this paper discusses each of the is-
sues raised in these sections in far greater detail.

2 System Model

In an open environment, there is a shared process-
ing platform upon which several independent applications
Ay, ..., Ay execute. We also assume that the shared pro-
cessing platform is comprised of a single preemptive pro-
cessor (without loss of generality, we will assume that this
processor has unit computing capacity), and m additional
(global) shared resources which may be shared among the
different applications. Each application may have addi-
tional “local” shared logical resources that are shared be-
tween different jobs within the application itself — the pres-
ence of these local shared resources is not relevant to the
design and analysis of the open environment. We will dis-
tinguish between:

e a unique system-level scheduler (or global scheduler),
which is responsible for scheduling all admitted appli-
cations on the shared processor;

e one or more application-level schedulers (or local
schedulers), that decide how to schedule the jobs of
an application.

An interface must be specified between each application
and the open environment. The goal of this interface spec-
ification is to abstract out and encapsulate the salient fea-
tures of the application’s resource requirements. The open
environment uses this information during admission con-
trol, to determine whether the application can be supported
concurrently with other already admitted applications; for
admitted applications, this information is also used by the

open environment during run-time to make scheduling de-
cisions. If an application is admitted, the interface repre-
sents its “contract” with the open environment, which may
use this information to enforce (“police”) the application’s
run-time behavior. As long as the application behaves as
specified by its interface, it is guaranteed to meet its timing
constraints; if it violates its interface, it may be penalized
while other applications are isolated from the effects of this
misbehavior. We require that the interface for each applica-
tion Ay be characterized by three parameters:

e Avirtual processor (VP) speed ay;
e A jitter tolerance Ay; and

e For each global shared resource Ry, a resource-holding
time Hy, (Rg) .

The intended interpretation of these interface parameters
is as follows: all jobs of the application will complete at
least Ay, time units before their deadlines if executing upon
a dedicated processor of computing capacity oy, and will
lock resource Ry for no more than Hy(Ry) time-units at a
time during such execution.

We now provide a brief overview of the application in-
terface parameters. Section 5 provides a more in depth dis-
cussion of the resource hold time parameter.

VP speed ;. Since each application Ay, is assumed val-
idated upon a slower virtual processor, this parameter is
essentially the computing capacity of the slower processor
upon which the application was validated.

Jitter tolerance Aj. Given a processor with computing
capacity «y, upon which an application Ay, is validated, this
is the minimum distance between finishing time and dead-
line among all jobs composing the application. In other
words, Ay is the maximum release delay that all jobs can
experience without missing any deadline.

At first glance, this characterization may seem like a se-
vere restriction, in the sense that one will be required to
“waste” a significant fraction of the VP’s computing capac-
ity in order to meet this requirement. However, this is not
necessarily correct. Consider the following simple (con-
trived) example. Let us represent a sporadic task [23, 5]
by a 3-tuple: (WCET, relative deadline, period). Consider
the example application comprised of the two sporadic tasks
{(1,4,4),(1,6,4)} to be validated upon a dedicated proces-
sor of computing capacity one-half. The task set fully uti-
lizes the VP. However, we could schedule this application
such that all jobs always complete two time units before
their deadlines. That is, this application can be character-
ized by the pair of parameters o = % and Ap = 2.

Observe that there is a trade-off between the VP speed
parameter «v;, and the timeliness constraint Ay — increas-
ing oy, (executing an application on a faster VP) may cause
an increase in the value of Ag. Equivalently, a lower ay
may result in a tighter jitter tolerance, with some job finish-
ing close to its deadline. However, this relationship between
ay, and Ay is not linear nor straightforward — by careful
analysis of specific systems, a significant increase in Ay
may sometimes be obtained for a relatively small increase
in ay.

Our characterization of an application’s processor de-
mands by the parameters oy, and Ay is identical to the
bounded-delay resource partition characterization of Feng
and Mok [22, 15, 14] with the exception of the Hy(R,) pa-
rameter.

Resource holding times Hj(R;). For open environ-
ments which choose to execute all global resources non-
preemptively (such as the designs proposed in [11, 6]),
Hi(R;) is simply the worst-case execution time upon
the VP of the longest critical section holding global re-
source Ry. We have recently [17, 8] derived algorithms
for computing resource holding times when more general
resource-access strategies such as the Stack Resource Pol-
icy (SRP) [3] and the Priority Ceiling Protocol (PCP) [27,
25] are instead used to arbitrate access to these global re-
sources; in [17, 8], we also discuss the issue of designing the
specific application systems such that the resource holding
times are decreased without compromising feasibility. We
believe that our sophisticated consideration of global shared
resources — their abstraction by the H}, parameters in the in-
terface, and the use we make of this information — is one of
our major contributions, and serves to distinguish our work
from other projects addressing similar topics. Our approach
toward resource holding times is discussed in greater detail
in Section 5.

3 Algorithms

In this section, we present the algorithms used by our
open environment to make admission-control and schedul-
ing decisions. We assume that each application is char-
acterized by the interface parameters described in Sec-
tion 2 above. When a new application wishes to execute,
it presents its interface to the admission control algorithm,
which determines, based upon the interface parameter of
this and previously-admitted applications, whether to admit
this application or not. If admitted, each application is ex-
ecuted through a dedicated server. At each instant during
run-time, the (system-level) scheduling algorithm decides
which server (ie. application) gets to run. If an application
violates the contract implicit in its interface, an enforcement

(2)
@ A >
— 5[Contending A3) Suspended
-
NG

4
©) (6)

Non-

Contending

Figure 1. State transition diagram. The labels
on the nodes and edges denote the name by
which the respective states and transitions
are referred to in this paper.

algorithm polices the application — such policing may affect
the performance of the misbehaving application, but should
not compromise the behavior of other applications.

We first describe the global scheduling algorithm used
by our open environment, in Section 3.1. A description of
our admission control algorithm appears in Section 3.2. The
entire framework is proved correct in Section 3.3. The use
of other local scheduling algorithms within our framework
is briefly discussed in Section 3.4.

3.1 System-level Scheduler

Our scheduling algorithm is essentially an application
of the Constant Bandwidth Server (CBS) of Abeni and
Buttazzo [1], enhanced to allow for the sharing of non-
preemptable serially reusable resources and for the concur-
rent execution of different applications in an open environ-
ment. In the remaining of the paper we will refer to this
server with the acronym BROE: Bounded-delay Resource
Open Environment.

CBS-like servers have an associated period Py, reflect-
ing the time-interval at which budget replenishment tends
to occur. For a BROE server, the value assigned to Py, is as

follows:
Ay

2(1 - Oék) '

In addition, each server maintains three variables: a
deadline Dy, a virtual time V)., and a reactivation time Zj,.
Since each application has a dedicated server, we will not
make any distinction between server and application param-
eters. At each instant during run-time, each server assigns
a state to the admitted application. There are four possi-
ble states (see Figure 1). Let us define an application to be

P, — (1

backlogged at a given time-instant if it has any active jobs
awaiting execution at that instant, and non-backlogged oth-
erwise.

e Each non-backlogged application is in either the inac-
tive or non-Contending states. If an application has
executed for more than its “fair share,” then it is non-
contending; else, it is inactive.

e Each backlogged application is in either the contend-
ing or suspended state'!. While contending, it is eligi-
ble to execute; executing for more than it is eligible to
results in its being suspended?.

These variables are updated by BROE according to the
following rules (i)—(vii) (let ., denote the current time).

(1) Initially, each application is in the inactive state. If appli-
cation A wishes to contend for execution at time-instant
teur then it transits to the contending state (transition (1) in
Figure 1). This transition is accompanied by the following
actions:

Dy — teur + Py
Vk, Z — teur

(i) At each instant, the system-level scheduling algorithm se-
lects for execution some application A in the contending
state — the specific manner in which this selection is made is
discussed in Section 3.1.1 below. Hence, observe that only
applications in the contending state are eligible to execute.

(iii) The virtual time of an executing application Ay is incre-
mented by the corresponding server at a rate 1/cv:

iV | 1/ow, while Ay is executing
=3 o, the rest of the time

(iv) If the virtual time V} of the executing application Ay be-
comes equal to Dy, then application Ay, undergoes transition
(2) to the suspended state. This transition is accompanied by
the following actions:

Zi «— Dy
Dy «— Dip+ P

(v) An application Ay that is in the suspended state necessarily

satisfies Z > fcur. As the current time tcyr increases, it
eventually becomes the case that Z;, = tcur. At that instant,
application Ay, transits back to the contending state (transi-
tion (3)).
Observe that an application may take transition (3) instanta-
neously after taking transition (2) — this would happen if the
application were to have its virtual time become equal to its
deadline at precisely the time-instant equal to its deadline.

Note that there is no analog of the suspended state in the original def-
inition of CBS [1].

Note there is an implicit executing state with transitions to and from
the contending state. The executing state is omitted from our description
for space reasons and because it is clear when the server will transition to
and from the executing state.

(vi) An application Ay which no longer desires to contend for
execution (i.e. the application is no longer backlogged) tran-
sits to the non-contending state (transition (4)), and remains
there as long as V}, exceeds the current time. When tcur >
V. for some such application Ay, in the non-contending state,
Ay transitions back to the inactive state (transition (5)); on
the other hand, if an application Ay desires to once again
contend for execution (note teur < Vi, otherwise it would be
in the inactive state), it transits to the suspended state (tran-
sition (6)). Transition (6) is accompanied by the following
actions:

Zy — W
Dy — Vi+ DB

Observe that an application may take transition (5) instanta-
neously after taking transition (4) — this would happen if the
application were to have its virtual time be no larger than the
current time at the instant that it takes transition (4).

(vii) An application that wishes to gain access to a shared global
resource R, must perform a budget check (i.e. 1is there
enough execution budget to complete execution of the re-
source prior to Dy?). If ax(Dy — Vi) < Hi(R¢) there is
insufficient budget left to complete access to resource R, by
Dy In this case, transition (7) is undertaken by an executing
application immediately prior to entering an outermost criti-
cal section locking a global resource® R,. This transition is
accompanied by the following actions:

Z, +— max(teur, Vi)
Dy — Vi+ P

If there is sufficient budget, the server is granted access to
resource .

Rules (i) to (vi) basically describe a bounded-delay ver-
sion of the Constant Bandwidth Server, ie. a CBS in which
the maximum service delay experienced by an application
Ay, is bounded by Ag. A similar server has also been used
in [18, 19]. The only difference from a straightforward im-
plementation of a bounded-delay CBS is the deadline update
of rule (vi) associated to transition (6) (which has been in-
troduced in order to guarantee that when an application re-
sumes execution, its relative deadline is equal to the server
period) and the addition of rule (vii).

Rule (vii) has been added to deal with the problem of
budget exhaustion when a shared resource is locked. This
problem, previously described in [9] and [11], arises when
an application accesses a shared resource and runs out of
budget (ie. is suspended after taking Transition (2)) before
being able to unlock the resource. This would cause intol-
erable blocking to other applications waiting for the same
lock. If there is insufficient current budget, taking transition

3Each application may have additional resources that are local in the
sense that are not shared outside the application. Attempting to lock such
a resource does not trigger transition (7).

(7) right before an application Ay locks a critical section
ensures that when Ay, goes to the contending state (through
transition (3)), it will have Dy — Vi, = P,. This guaran-
tees that A, will receive (v, Py;) units of execution prior to
needing to be suspended (through transition (2)). Thus, en-
suring that the WCET of each critical section of Ay, is no
more than «y Py, is sufficient to guarantee that Ay, experi-
ences no deadline-postponement within any critical section.
Our admission control algorithm (Section 3.2) does in fact
ensure that

Hi(Re) < aphPy (2)

for all applications Ay, and all resources Ry; hence, no lock-
holding application experiences deadline postponement.

At first glance, requiring that applications satisfy Con-
dition 2 may seem to be a severe limitation of our frame-
work. But this restriction appears to be unavoidable if CBS-
like approaches are used as the system-level scheduler: in
essence, this restriction arises from a requirement that an
application not get suspended (due to having exhausted its
current execution capacity) whilst holding a resource lock.
To our knowledge, all lock-based multi-level scheduling
frameworks impose this restriction explicitly (e.g. [9]) or
implicitly, by allowing lock-holding applications to con-
tinue executing non-preemptively even when their current
execution capacities are exhausted (e.g., [6, 11]).

3.1.1 Making scheduling decisions

We now describe how our scheduling algorithm determines
which BROE server (i.e., which of the applications currently
in the contending state) to select for execution at each in-
stant in time.

In brief, we implement EDF among the various contend-
ing applications, with the application deadlines (the Dy’s)
being the deadlines under comparison. Access to the global
shared resources is arbitrated using SRP*.

In greater detail:

1. Each global resource R is assigned a ceiling II(R¢) which
is equal to the minimum value from among all the period pa-
rameters Py, of Ay, that use this resource. Initially, [I(R;) «—
oo for all the resources. When an application Ay, is admitted
that uses global resource Ry, II(R;) «— min(II(Ry), P);
TI(R¢) must subsequently be recomputed when such an ap-
plication leaves the environment.

2. At each instant, there is a system ceiling which is equal to
the minimum ceiling of any resource that is locked at that
instant.

3. At the instant that an application Ay becomes the earliest-
deadline one that is in the contending state, it is selected for

#Recall that in our scheduling scheme, deadline postponement cannot
occur for an application while it is in a critical section — this property
is essential to our being able to apply SRP for arbitrating access to shared
resources.

execution if and only if its period parameter P is strictly
less than the system ceiling at that instant. Else, it is blocked
while the currently-executing application continues to exe-
cute.

As stated above, this is essentially an implementation of
EDF+SRP among the applications. The SRP requires that
the relative deadline of a job locking a resource be known
beforehand; that is why our algorithm requires that deadline
postponement not occur while an application has locked a
resource.

3.2 Admission control

The admission control algorithm checks for three things:

1. As stated in Section 3.1 above, we require that each applica-
tion Ay, have all its resource holding times (the Hy (R/)’s) be
< ay Py, — any application Ay, whose interface does not sat-
isfy this condition is summarily rejected. If the application
is rejected, the designer may attempt to increase the oy, pa-
rameter and resubmit the application; increasing o will si-
multaneously increase i, P, while decreasing the Hy, (Ry)’s.
Effectively choosing the server parameters is an interesting
open question beyond the scope of the current paper.

2. The sum of the VP speeds — the «; parameters — of all ad-
mitted tasks may not exceed the computing capacity of the
shared processor (assumed to be equal to one). Hence Ay, is
rejected if admitting it would cause the sum of the «; param-
eters of all admitted applications to exceed one.

3. Finally, the effect of inter-application blocking must be con-
sidered — can such blocking cause any server to miss a dead-
line?

Admission control and feasibility — the ability to meet
all deadlines — are two sides of the same coin. As stated
above, our system-level scheduling algorithm is essentially
EDF, with access to shared resources arbitrated by the SRP.
Hence, the admission control algorithm needs to ensure
that all the admitted applications together are feasible under
EDF+SRP scheduling. We therefore looked to the EDF+SRP
feasibility test in [20, 24, 4] for inspiration and ideas. In
designing an admission control algorithm based upon these
known EDF+SRP feasibility tests there are a series of de-
sign decisions. Based upon the available choices, we came
up with two possible admission control algorithms: a more
accurate that requires information regarding each applica-
tion’s resource hold time for every resource, and a slightly
less accurate test that reduces the amount of information re-
quired by the system to make an admission control decision.
In this section, we will introduce the two admission control
algorithms and discuss the benefits and drawbacks of each.

3.2.1 Admission Control Algorithms

If the system has full knowledge of each application’s us-
age of global resources, then the maximum blocking expe-

rienced by any applicatin Ay, is:

By, = max {H;(R,)|3H,(R;) #0AN P, < P} (3)
Pj>Pk

In other words, the maximum amount of time for which A,
can be blocked is equal to the maximum resource-holding-
time among all applications having a server period > Py
and sharing a global resource with some application having
a server period < Pj,. The following test may be used when
the admission control algorithm has information from each
application Aj on which global resources Ry are accessed
and what the value of Hy(Ry) is. A proof of the theorem is
contained in [16].

Theorem 1 Applications Ay, ..., A, may be composed
upon a unit-capacity processor together without any server
missing a deadline, if

B
Vke{l,....q} : Zai+Fk§1 4)
Pi<Py k

where the blocking term By, is defined in Equation 3.

However, this exact admission control test based on a
policy of considering all resource usages (as the theorem
above) has drawbacks. One reason is that it requires the sys-
tem to keep track of each application’s resource-hold times.
An even more serious drawback of this approach is how
to fairly account for the “cost” of admitting an application
into the open environment. For example, an application that
needs a VP speed twice that of another should be considered
to have a greater cost (all other things being equal); con-
sidered in economic terms, the first application should be
“charged” more than the second, since it is using a greater
fraction of the platform resources and thus having a greater
(adverse) impact on the platform’s ability to admit other ap-
plications at a later point in time.

But in order to measure the impact of global resource-
sharing on platform resources, we need to consider the re-
source usage of not just an application, but of all other ap-
plications in the systems. Consider the following scenario.
If application A; is using a global resource that no other
application chooses to use, then this resource usage has no
adverse impact on the platform. Now if a new application
As with a very small period parameter that needs this re-
source seeks admission, the impact of A;’s resource-usage
becomes extremely significant (since A; would, according
to the SRP, block A5 and also all other applications that have
a period parameter between A;’s and A5’s). So how should
we determine the cost of the A;’s use of this resource, par-
ticularly if we do not know beforehand whether or not Az
will request admission at a later point in time?

To sidestep the dilemma described above, we believe
a good design choice is to effectively ignore the exact

resource-usage of the applications in the online setting, in-
stead considering only the maximum amount of time for
which an application may choose to hold any resource; also,
we did not consider the identity of this resource. That is,
we required a simpler interface than the one discussed in
Section 2, in that rather than requiring each application to
reveal its maximum resource-holding times on all m re-
sources, we only require each application Ay to specify a
single resource-holding parameter Hj, which is defined as
follows:

Hy, = miax Hy,(Ry) (5)

The interpretation is that A; may hold any global resource
for up to Hj, units of execution. With such characteriza-
tion of each application’s usage of global resources, we en-
sure that we do not admit an application that would unfairly
block other applications from executing due its large re-
source usage. This test, too, is derived directly from the
EDF+SRP feasibility test of Theorem 1, and is as follows:

ALGORITHM ADMIT(A = (ak, Pk, Hy))
> Check if Ay, is schedulable:

1 ifmaxPi>pk H; > Pk(l - ZPJSPk Oéj) return “reject”
> Check if already admitted applications
remain schedulable:

2 foreach (P; < Px)

doif Hy, > Pi(1—)", _, ;) return “reject”

3=t

4 return “admit”

w

It follows from the properties of the SRP, (as proved
in [3]) that the new application Ay, if admitted, may block
the execution of applications A; with period parameter P; <
Py, and may itself be subject to blocking by applications
A; with period parameter P; > Pj. Since the maximum
amount by which any application A; with P, > P, may
block application Ay, is equal to H;, line 1 of ALGORITHM
ADMIT determines whether this blocking can cause Ay, to
miss its deadline. Similarly, since the maximum amount by
which application A, may block any other application is,
by definition of the interface, equal to Hy, lines 2-3 of AL-
GORITHM ADMIT determine whether Aj,’s blocking causes
any other application with P; < P}, to miss its deadline. If
the answer in both cases is “no,” then ALGORITHM ADMIT
admits application Ay, in line 4.

3.2.2 Enforcement

One of the major goals in designing open environments is to
provide inter-application isolation — all other applications
should remain unaffected by the behavior of a misbehaving
application. By encapsulating each application into a BROE
server, we provide the required isolation, enforcing a correct
behavior for every application.

Using techniques similar to those used to prove isolation
properties in CBS-like environments (see, e.g., [1, 18]), it

can be shown that our open environment does indeed guar-
antee inter-application isolation in the absence of resource-
sharing. It remains to study the effect of resource-sharing
on inter-application isolation.

Clearly, applications that share certain kinds of resources
cannot be completely isolated from each other: for exam-
ple if one application corrupts a shared data-structure then
all the applications sharing that data structure are affected.
When a resource is left in an inconsistent state, one op-
tion could be to inflate the resource-holding time param-
eters with the time needed to reset the shared object to a
consistent state.

However, we believe that it is rare that truly
independently-developed applications share ‘“corruptible”
objects — good programming practice dictates that
independently-developed applications not depend upon
proper behavior of other applications (and in fact this is
often enforced by operating systems). Hence the kinds of
resources we expect to see shared between different ap-
plications are those that the individual applications cannot
corrupt. In that case, the only misbehavior of an appli-
cation Ay that may affect other applications is if it holds
on to a global resource for greater than «y Py, or than the
Hj, time units of execution that it had specified in its inter-
face. To prevent this, we assume that our enforcement algo-
rithm simply preempts Ay, after it has held a global resource
for min{ Hy, o, Py }, and ejects it from the shared resource.
This may result in Ay’s internal state getting compromised,
but the rest of the applications are not affected.

When applications do share corruptible resources, we
have argued above that isolation is not an achievable goal;
however, containment [12] is. The objective in containment
is to ensure that the only applications effected by a mis-
behaving application are those that share corruptible global
resources with it — the intuition is that such applications are
not truly independent of each other. We have strategies for
achieving some degree of containment; however, discussion
of these strategies is beyond the scope of this document.

3.3 Proofs

In this section, we show (Theorem 2) that an admitted
application that behaves as specified in its interface is guar-
anteed to meet all deadlines. A complete proof of the cor-
rectness of BROE is contained in the companion technical
report [16]; the proof sketches contained in this section out-
line and present all the major ideas to give the reader a
glimpse of the issues involved.

The following lemma demonstrates that our scheduling
algorithm guarantees a certain minimum amount of service
to each application that needs to execute, in a timely man-
ner. This result is very similar to results that have been
obtained concerning the bounded-delay resource partition

o Py t o P
B | [—>
to t 12 ls time

Figure 2. Worst case scenario discussed in
the proof of Lemma 1. The application re-
ceives execution during the shaded intervals.

model [22, 15, 14]; the major difference is that the bounded-
delay resource partition model does not, to our knowledge,
consider shared resources.

Lemma 1 [n any time interval of length t during which Ap-
plication Ay served by a BROE server is continually back-
logged, it receives at least (t — Ay)ay, units of execution.

Proof Sketch:
It can be shown that the “worst case” (see Figure 2) oc-
curs when application Ay

e receives execution immediately upon entering the contend-
ing state (at time ¢, in the figure), and the interval of length
t begins when it completes execution and undertakes transi-
tion (2) to the suspended state (at time ¢; in the figure); and

e after having transited between the suspended and contending
states an arbitrary number of times, undertakes transition (3)
to enter the contending state (time ¢2 in the figure) at which
time it is scheduled for execution as late as possible; the in-
terval ends just prior to Ay, being selected for execution (time
ts in the figure).

From the optimality of EDF and the fact that the admis-
sion control algorithm ensures that the sum of the «; pa-
rameters of all admitted applications does not exceed one,
it can be shown that the execution received over this interval
is (t—2Py(1—ay))ag. By the definition of Py, (Equation 1,
this is equal to (t — Ag)y, and the lemma is proved. l

We are now ready to prove our major result:

Theorem 2 If all jobs of application Ay always complete
execution at least Ay, time units prior to their deadlines
when executing upon a dedicated VP of computing capacity
Qg , then all jobs of Ay, meet their deadlines when scheduled
by EDF + SRP on the BROE server.

Proof Sketch: Let d, denote any time-instant, and con-
sider a sequence of job arrivals of application Ay such that
(i) some job has a deadline at time-instant d,; and (ii) this
job completes as late as possible when Ay, is scheduled in

isolation upon a dedicated virtual processor (VP) of com-
puting capacity ay. Let ty denote this completion time —
by definition of the interface parameter Ay, it must be the
case that d, — ty > Aj. We will prove that all jobs with
deadline < d, complete by their deadlines when scheduled
in the open environment.

Let ¢4 denote the latest time-instant prior to ¢y during
which there are no jobs with deadline < d, awaiting ex-
ecution in the VP schedule (t; < 0 if there was no such
instant). Hence over [t,,t7), the VP is only executing jobs
with deadline < d,, or jobs that were blocking the execu-
tion of jobs with deadline < d,. Further, the total amount
of such execution during [ts,t;) upon the VP is equal to
(t f— ls)aug.

Since the open environment’s scheduling algorithm is
EDF based, it, too, will execute these jobs in preference to
jobs with deadline later than d,, after time-instant ¢4, as long
as there are such jobs awaiting execution.

By Lemma 1 above, application Ay, is guaranteed to re-
ceive enough execution to have completed all this work over
the interval [ts, "), where ¢’ is the earliest time instant that
satisfies ((t' —ts)—Ag) xag > (tp—ts)o =t > t5+Ay.

That is, all jobs of application Ay with deadline < d,
complete by time-instant ¢y + Ay, upon the open environ-
ment. But as noted above it follows from the definition of
the interface parameter Ay, that ty + Ay < d,, and the the-
orem is proved. l

3.4 Application-Level Scheduling with Al-
gorithms Other Than EDF

The application may require that a scheduler other than
EDF + SRP be used to as an application-level scheduler. As
mentioned in the previous subsection, our BROE server pro-
vides a similar guarantee as a bounded-delay resource par-
tition (g, Ay) (the companion technical report [16] shows
that our server execution, in fact, has the same guarantee
as (ay, Ay)). Examples of analysis for the fixed-priority
case under servers implementing bounded-delay partitions
or related partitions, in absence of shared resources, can be
found in [22, 28, 29, 19] and easily applied to our open envi-
ronment. We believe that the results for local fixed-priority
schedulability analysis on resource partitions can be eas-
ily extended to include local and global resources, and be
scheduled by BROE without modification to the server. We
leave the exploration of this conjecture to a future paper.

4 Related work

We consider this paper to be a generalization of earlier
(“first-generation”) open environments (see, e.g., [22, 15,
7, 28, 14, 10]), in that our results are applicable to shared

platforms comprised of serially reusable shared resources
in addition to a preemptive processor.

Our work is closest in scope and ambition to the work
from York described in [11], the work in progress at
Malardalen outlined in the work-in-progress paper [6], and
the First Scheduling Framework (FSF) [2]. Like these
projects, our approach models each individual application
as a collection of sporadic tasks which may share resources.
One major difference between our work and both these
pieces of related work concerns the approach towards shar-
ing global resources — while both [11, 6, 2] have made the
design decision that global resources will be analyzed and
executed non-preemptively, we believe that this is unneces-
sarily restrictive’. The issue of scheduling global resources
is explored further in Section 5 below.

Another difference between our work and the results pre-
sented in [11] concerns modularity. We have adopted an
approach wherein each application is evaluated in isola-
tion, and integration of the applications into the open en-
vironment is done based upon only the (relatively simple)
interfaces of the applications. By contrast, [11] presents
a monolithic approach to the entire system, with top-level
schedulability formulas that cite parameters of individual
tasks from different applications. We expect that a mono-
lithic approach is more accurate but does not scale, and is
not really in keeping with the spirit of open environment
design.

The brief presentation in the work-in-progress paper [6]
did not provide sufficient detail for us to determine whether
they adopt a modular or a monolithic view of a composite
open system.

Although they do not consider additional shared re-
sources, two other projects bear similarities to our work.
One is the bounded-delay resource partition work out of
Texas [22, 15, 14], and the other the compositional frame-
work studied by Shin and Lee [28]. Both these projects as-
sume that each individual application is comprised of peri-
odic implicit-deadline (“Liu and Layland”) tasks that do not
share resources (neither locally within each application nor
globally across applications); however, the resource “sup-
ply” models considered turn out to be alternative implemen-
tations of our scheduler (in the absence of shared resources).

5 Sharing global resources

One of the features of our open environment that dis-
tinguishes it from other work that also considers resource-
sharing is our approach towards the sharing of global re-
sources across applications.

As stated above, most related work that allows global re-

SWe should point out that [11] considers static-priority scheduling
while we adopt an EDF-based approach.

source sharing (e.g. [11, 6]) mandates that global resources
be accessed non-preemptively. The rationale behind this ap-
proach is sound: by holding global resources for the least
possible amount of time, each application minimizes the
blocking interference to which it subjects other applica-
tions. However, the downside of such non-preemptive ex-
ecution is felt within each application — by requiring cer-
tain critical sections to execute non-preemptively, it is more
likely that an application when evaluated in isolation upon
its slower-speed VP will be deemed infeasible. The server
framework and analysis described in this paper allows for
several possible execution modes for critical sections. We
now analyze when each mode may be used.

More specifically, in extracting the interface for an ap-
plication Ay, that uses global resources, we can distinguish
between three different cases:

o If the application is feasible on its VP when it executes
a global resource R, non-preemptively, then have it ex-
ecute R, non-preemptively.

e If an application is infeasible on its VP of speed oy
when scheduled using EDF+SRP for Ry, it follows
from the optimality of EDF+SRP [4] that no (work-
conserving) scheduling strategy can result in this appli-
cation being feasible upon a VP of the specified speed.

e The interesting case is when neither of the two above
holds: the system is infeasible when R, executes non-
preemptively but feasible when access to Ry is arbi-
trated using the SRP. In that case, the objective should
be to devise a local scheduling algorithm for the ap-
plication that retains feasibility while minimizing the
resource holding times. There are two possibilities:

a) Let &, (Re) be the largest critical section of any
job of Ay, that accesses global resource Ry. If and
&k(Re) < Ap/2 (in addition to the previously-
stated constraint that the resource-hold time of
Hi(R¢) < ayPy), then Aj, may disable (local)
preemptions when executing global resource R,
on its BROE server. A theorem formally stating
this is presented below. In some cases, it may be
still advantageous to reduce Hy(Ry) to increase
the chances that the constraint Hy(R;) < o Py
is satisfied.

b) If fk(Rg) > Ak/Q but Hk(Rg) < ap Py still
holds, R, may be executed using SRP. The
resource-hold time could potentially be reduced
by using techniques discussed at the end of this
section.

Theorem 3 Given an application Ay (comprised of spo-
radic tasks) accessing globally shared resource Ry can be

EDF + SRP scheduled upon a dedicated virtual processor of
speed-ay, where each job completes at least A, time units
prior to its deadline: if H,(R;) < apPy and &:(Re) <
Ay /2 then Ay may execute any critical section accessing
Ry with local preemptions disabled on a BROE server with
parameter (au, A).

The theorem above is proved correct in [16]. If the the-
orem is satisfied for some Ay and Ry, then we may use
&k (Ry) instead of Hy(Ry) in the admission control tests of
Section 3.2.1. This increases the likelihood of Ay, being ad-
mitted; the reason is because the amount of time Aj, could
block applications A; (with P; < Py) is decreased.

Reducing Resource-Hold Times Hy(R¢). In [17], we
present an algorithm for computing resource hold times
when applications are scheduled using EDF+SRP; this algo-
rithm essentially identifies the worst-case and computes the
resource hold time for this case. We also presented an al-
gorithm for sometimes reducing the resource hold times by
introducing “dummy” critical sections and thereby chang-
ing the preemption ceilings of resources. Both algorithms
from [17] may be modified for use in computing/ reducing
the resource hold times that are needed to specify the ap-
plication interfaces for our open environment. The straight-
forward modifications to these algorithms that allow for the
computation of resource hold times on our server will be
presented in a journal version of this paper.

6 Discussion and Conclusions

In this paper, we have presented a design for an open en-
vironment that allows for multiple independently developed
and validated applications to be multi-programmed on to a
single shared platform. We believe that our design contains
many significant innovations.

e We have defined a clean interface between applications and
the environment, which encapsulates the important informa-
tion while abstracting away unimportant details.

e The simplicity of the interface allows for efficient run-time
admission control, and helps avoid combinatorial explosion
as the number of applications increases.

e We have addressed the issue of inter-application resource
sharing in great detail. moving beyond the ad hoc strategy of
always executing shared global resources non-preemptively,
we have instead formalized the desired property of such
resource-sharing strategies as minimizing resource holding
times.

e We have studied a variety of strategies for performing arbi-
tration for access to shared global resources within individ-
ual applications such that resource holding times are indeed
minimized.

For the sake of concreteness, we have assumed that each
individual application to be executed upon our open envi-
ronment scheduled using EDF and some protocol for ar-
bitrating access to shared resources. This is somewhat
constraining — ideally, we would like to be able to have
each application scheduled using any local scheduling al-
gorithm®. Our framework, in fact, is general enough to han-
dle a variety of different task models and scheduling algo-
rithms. Section 3.4 and the companion technical report [16]
briefly discusses how local schedulers other than EDF may
be used within our framework; this will be elaborated fur-
ther in a future journal version of this paper, in preparation.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications
in hard real-time systems. In Proceedings of the Real-Time Sys-
tems Symposium, pages 3—13, Madrid, Spain, December 1998. IEEE
Computer Society Press.

[2] M. Aldea, G. Bernat, 1. Broster, A. Burns, R. Dobrin, J. M. Drake,
G. Fohler, P. Gai, M. G. Harbour, G. Guidi, J. Gutirrez, T. Lennvall,
G. Lipari, J. Martnez, J. Medina, J. Palencia, and M. Trimarchi. Fsf:
A real-time scheduling architecture framework. In Proceedings of the
IEEE Real-Time Technology and Applications Symposium (RTAS),
pages 113-124, Los Alamitos, CA, USA, 2006. IEEE Computer So-
ciety.

[3] T. P. Baker. Stack-based scheduling of real-time processes. Real-
Time Systems: The International Journal of Time-Critical Comput-
ing, 3, 1991.

[4] S. Baruah. Resource sharing in EDF-scheduled systems: A closer
look. In Proceedings of the IEEE Real-time Systems Symposium,
pages 379-387, Rio de Janeiro, December 2006. IEEE Computer
Society Press.

[5] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In Proceedings of the 11th
Real-Time Systems Symposium, pages 182—190, Orlando, Florida,
1990. IEEE Computer Society Press.

[6] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Real-time subsystem
integration in the presence of shared resource. In Proceedings of the
Real-Time Systems Symposium — Work-In-Progress Session, pages
9-12, Rio de Janerio, December 2006.

[7]1 G. Bernat and A. Burns. Multiple servers and capacity sharing for
implementing flexible scheduling. Real- Time Systems, 22:49-75,
2002.

[8] M. Bertogna, N. Fisher, and S. Baruah. Resource-locking durations
in static-priority systems. In Proceedings of the Workshop on Parallel
and Distributed Real-Time Systems, April 2007.

[9] M. Caccamo and L. Sha. Aperiodic servers with resource constraints.
In Proceedings of the IEEE Real-Time Systems Symposium, London,
UK, December 2001. IEEE Computer Society Press.

[10] R. L. Davis and A. Burns. Hierarchical fixed priority pre-emptive
scheduling. In Proceedings of the IEEE Real-time Systems Sympo-
sium, pages 389-398, Miami, Florida, 2005. IEEE Computer Soci-
ety.

[11] R. 1. Davis and A. Burns. Resource sharing in hierarchical fixed
priority pre-emptive systems. In Proceedings of the IEEE Real-
time Systems Symposium, pages 257-267, Rio de Janeiro, December
2006. IEEE Computer Society Press.

6Shin and Lee [28] refer to this property as universality.

10

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

D. de Niz, L. Abeni, S. Saewong, and R. Rajkumar. Resource sharing
in reservation-based systems. In Proceedings of the IEEE Real-Time
Systems Symposium, London, December 2001. IEEE Computer So-
ciety Press.

Z. Deng and J. Liu. Scheduling real-time applications in an Open
environment. In Proceedings of the Eighteenth Real-Time Systems
Symposium, pages 308-319, San Francisco, CA, December 1997.
IEEE Computer Society Press.

X. Feng. Design of Real-Time Virtual Resource Architecture for
Large-Scale Embedded Systems. PhD thesis, Department of Com-
puter Science, The University of Texas at Austin, 2004.

X. A. Feng and A. Mok. A model of hierarchical real-time virtual re-
sources. In Proceedings of the IEEE Real-Time Systems Symposium,
pages 26-35. IEEE Computer Society, 2002.

N. Fisher, M. Bertogna, and S. Baruah. The design of an EDF-
scheduled resource-sharing open environment. Technical report, De-
partment of Computer Science, The University of North Carolina at
Chapel Hill, 2007. Available at http://www.cs.unc.edu/"~
fishern/pubs.html.

N. Fisher, M. Bertogna, and S. Baruah. Resource-locking durations
in edf-scheduled systems. In Proceedings of the 13th IEEE Real-
Time and Embedded Technology and Applications Symposium. IEEE,
April 2007.

G. Lipari and S. Baruah. Greedy reclaimation of unused bandwidth
in constant-bandwidth servers. In Proceedings of the EuroMicro
Conference on Real-Time Systems, pages 193-200, Stockholm, Swe-
den, June 2000. IEEE Computer Society Press.

G. Lipari and E. Bini. Resource partitioning among real-time appli-
cations. In Proceedings of the EuroMicro Conference on Real-time
Systems, pages 151-160, Porto, Portugal, 2003. IEEE Computer So-
ciety.

G. Lipari and G. Buttazzo. Schedulability analysis of periodic and
aperiodic tasks with resource constraints. Journal Of Systems Archi-
tecture, 46(4):327-338, 2000.

C. Liu and J. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment. Journal of the ACM, 20(1):46-61,
1973.

A. Mok, X. Feng, and D. Chen. Resource partition for real-time
systems. In 7th IEEE Real-Time Technology and Applications Sym-
posium (RTAS °01), pages 75-84. IEEE, May 2001.

A. K. Mok. Fundamental Design Problems of Distributed Sys-
tems for The Hard-Real-Time Environment. PhD thesis, Laboratory
for Computer Science, Massachusetts Institute of Technology, 1983.
Available as Technical Report No. MIT/LCS/TR-297.

R. Pellizzoni and G. Lipari. Feasibility analysis of real-time periodic
tasks with offsets. Real-Time Systems: The International Journal of
Time-Critical Computing, 30(1-2):105-128, May 2005.

R. Rajkumar. Synchronization In Real-Time Systems — A Priority
Inheritance Approach. Kluwer Academic Publishers, Boston, 1991.

R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource ker-
nels: a resource-centric approach to real-time and multimedia sys-
tems. In Readings in multimedia computing and networking, pages
476-490. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2001.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization. IEEE Transactions
on Computers, 39(9):1175-1185, 1990.

I. Shin and I. Lee. Periodic resource model for compositional real-
time guarantees. In Proceedings of the IEEE Real-Time Systems Sym-
posium, pages 2—13. IEEE Computer Society, 2003.

I. Shin and I. Lee. Compositional real-time scheduling framework.
In Proceedings of the IEEE Real-Time Systems Symposium, pages
57-67. IEEE Computer Society, 2004.

