
On the Effectiveness of Energy-Aware Real-Time

Scheduling Algorithms on Single-Core Platforms

Mario Bambagini1,2, Marko Bertogna2 and Giorgio Buttazzo1

1Scuola Superiore Sant’Anna, Pisa, Italy
2University of Modena and Reggio Emilia, Italy

Abstract—Energy-aware scheduling is a challenging problem
that has been studied for decades, investigating the trade-off
between performance and energy consumption.

In early CMOS circuits, Dynamic Voltage and Frequency
Scaling (DVFS) techniques allowed drastically reducing the
power consumption. Recent technological advancements have
decreased the portion of dissipation which is affected by speed
scaling, making Dynamic Power Management (DPM) algorithms
more effective. However, the adoption of simplistic power models
often biased the decision on which technique to adopt, decreasing
the effectiveness of the selected implementation.

This paper discusses the factors to consider when deciding
which technique to implement on a given single-core architecture,
highlight the limitations of the current mainstream.

I. INTRODUCTION

Energy saving algorithms became crucial in actual embed-

ded platforms for extending the lifetime of battery-operated

devices.

The two techniques to reduce energy dissipation are Dy-

namic Voltage and Frequency Scaling (DVFS) and Dynamic

Power Management (DPM). DVFS strategies aim at reducing

the system performance by adjusting the voltage and/or fre-

quency to reduce the overall energy consumption. As scaling

frequency down makes execution times longer, the objective

of this technique is to exploit the slowest frequency that still

guarantees real-time constraints. Conversely, DPM techniques

aim at switching the processor in a low-power inactive state

for the longest possible time, thus postponing tasks execution

as long as possible, still guaranteeing the task real-time

constraints.

In CMOS technology, power consumption is due to both

dynamic and leakage components, which are ascribable to

system activity and static dissipation, respectively. Unless

the system is off, the static contribution is always present,

independently of the actual performance level. Thus, DVFS

approaches that modify the clock frequency are more suitable

for reducing the dynamic power, whereas DPM solutions are

best suited for decreasing the impact of the static component.

Historically (before 2005), CMOS circuits used to operate

at high supply voltages, much higher than their threshold

voltages, making the impact of dynamic power consumption
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overwhelming the static dissipation. This fact caused a pro-

liferation of DVFS approaches, which are more suitable for

reducing dynamic power. With the progress of electronic tech-

nologies, miniaturization has considerably shrunk transistor

size, reducing the supply voltage to decrease the dynamic

power consumption. Even though the threshold voltage has

also been lowered, the gap between supply and threshold

voltages has been significantly reduced, leading to an expo-

nential increase of the leakage consumption [1], [2], [3]. Since

static dissipation has become the dominant cause of power

consumption, DPM approaches are today preferred over DVFS

ones, as they extend the time spent in low-power states.

Paper contribution: The main contribution of this work

consists of analyzing which scheduling technique is more

effective for actual single-core architectures. The principal

DVFS and DPM algorithms are compared on three represen-

tative platforms, evaluating their behaviors for different task

characteristics. The current belief [4], [5], [6], [7], [8] that

considers DVFS algorithms less effective than DPM ones is

questioned first, evaluating the system parameters that mostly

affect the validity of this assumption on actual hardware.

Moreover, although multi-core architectures are steadily grow-

ing in importance, single-core systems are still of interest

because many results can be used locally on each core in

partitioned approaches.

Detailed experiments are presented to show the technique

that is more suitable under each considered scenario.

Paper organization: Section II details the state of art

concerning the problem under analysis. Section III introduces

the system and power models. Then, Section IV shows a moti-

vational example. Section V details the considered algorithms

while Section VI provides the power models of several real

processors. Section VII analyzes the algorithm performance

and Section VIII ends the paper with the final remarks.

II. STATE OF ART

One of the first papers about power management exploiting

frequency scaling was due to Yao et al. [9]. The authors

proposed an offline algorithm that, given a task set, computes

the minimum energy schedule under the Earliest Deadline First

scheduling (EDF) algorithm [10]. Then, they use an online

method to scale the speed according to the actual workload at

every scheduling event. The analysis compares the efficiency



of the algorithm with respect to different power models, but

without taking switching overheads into account.

Aydin et al. [11] proposed three algorithms with growing

complexity. The first one computes the lowest CPU speed

such that the task set is schedulable under the assumption that

all tasks execute for their worst case. The second algorithm

(DRA) keeps track of the times at which a task is going to

be dispatched. At runtime, if a task is dispatched earlier, the

CPU is slowed down to prolong the execution until the original

finishing time. The third algorithm (AGR) estimates the tasks

completion times based on past instances and computes the

lowest CPU speed to keep the task set feasible assuming

that tasks execute for such estimates. However, since the

estimations can be optimistic, the algorithm may speed the

CPU up to recover from a task overrun.

Pillai and Shin [12] proposed three algorithms considering

both EDF and RM scheduling policies. The first approach runs

offline and exploits only the static slack: when the system

starts, the running speed is set equal to the lowest available

one which guarantees the task set feasibility. Then, the Cycle

Conservative algorithm (cc-EDF and cc-RM) is introduced

which, at every scheduling event, sets the running speed as

the slowest available one that guarantees timing constraints

using the last execution time for terminated tasks (whose new

job has not arrived yet) and the worst case for the other ones.

The last proposed algorithm, called Look-Ahead RT-DVS, runs

only under EDF and aims at further reducing the running speed

by executing the task with the earliest deadline until its time

limit at the slowest possible speed, while pushing pending and

incoming jobs as close as possible to their deadlines. Although

the actual speed until the first deadline can be really low,

for executing the other tasks a high speed may be necessary.

However, this side effect is significantly reduced thanks to task

early terminations.

The problem of obtaining an optimal frequency from a

discrete frequency range was discussed by Bini et al. [13]. The

authors provided a method for computing the optimal speed

offline (that could be unavailable in a specific architecture)

and introduced a speed modulation technique to achieve the

required speed using two discrete values. The analysis selects

the pair of frequencies that minimizes energy consumption

also considering switching overheads. Despite its innovative

contribution, such an offline approach does not take advantage

of tasks early terminations to further reduce consumption.

Some authors [14], [15] reported that online DVFS tech-

niques that frequently scale the execution speed may lead

to transient faults. Another side effect of DVFS techniques

was emphasized by Kim et al. [16], who noticed that such

algorithms increase the number of preemptions, leading to

a higher system utilization and, therefore, a higher energy

consumption. To mitigate such a problem, they proposed two

preemption control DVFS techniques.

The raising impact of leakage power in modern architec-

tures, highlighted by Kim et al. [4] and empirically tested

by Bambagini et al. [5], is driving the research on power

management toward DPM techniques.

Lee et al. [6] proposed two leakage control algorithms for

procrastinating tasks execution as long as possible, both under

dynamic (LC-EDF) and fixed (LC-DP) priority scheduling.

Using a dual priority scheme [17], LC-DP computes the

longest delay (promotion time) each task can suffer still

satisfying its deadline.

Jejurikar et al. [18] proposed an approach (CS-DVS-P)

based on the critical speed analysis and task procrastination

working for periodic tasks under EDF. First, an offline DPM

algorithm computes the maximum time each task can spend

in the sleep state within its period. Then, at runtime, sleep

management is delegated to an external controller that switches

the system off for the corresponding pre-computed time.

Jejurikar and Gupta [19] extended the previous method to

consider early terminations and fixed priority scheduling [20].

Chen and Kuo [7] proposed two solutions for fixed priority

systems. The first method simulates the execution of periodic

tasks to compute the idle time available until the next deadline.

Then, such a time is used to postpone the task activations and

switch the system into the sleep state. The other algorithm in-

troduces the virtual blocking, which is the maximum blocking

that tasks can suffer, to extend the procrastination interval.

Awan and Petters [8] proposed to accumulate task execution

slack to switch the processor off during such intervals under

EDF, considering tasks with different criticality and several

low-power states and different break-even times. However,

tasks are always executed at the maximum speed.

Huang et al. [21], [22] proposed an offline analysis that

combines DPM and Real-Time Calculus to estimate tasks

arrivals, compute the CPU idle intervals and then, at runtime,

modulate between active (at maximum speed) and sleep states.

This approach leads to sleep intervals that are generally

smaller and more frequent than those obtained by procras-

tination algorithms.

Bambagini et al. [23] proposed an algorithm for fixed

priority tasks which exploits the limited preemptive scheduling

model to further reduce energy consumption with respect to

the fully-preemptive model. More precisely, at design time,

when the non-preemptive regions are computed, the slowest

feasible speed and the minimum among all the blocking

tolerances (maximum time interval during which a task can be

blocked from the execution of lower priority tasks) are also

returned. At runtime, when an idle event occur, the inactivity

is extended for the minimum blocking tolerance among all

the tasks, delaying the execution of the incoming jobs and

prolonging the time spent in a low-power state.

With respect to other papers [24], [25], [26], [27] which

compared energy-aware scheduling algorithms, our proposal

extends the analysis to DPM solutions rather than focusing

only on the DVFS approach.

Moreover, many papers [28], [29], [30] have been proposed

for modeling the power dissipation of the processors, pro-

viding effective algorithms for estimating the actual power

consumption at runtime. However, an offline model has been

preferred in this work as it provides an excellent trade-off

between representativeness and simplicity.



III. SYSTEM MODEL

We consider a system consisting of a task set Γ composed of

n independent periodic tasks, {τ1, τ2, . . . , τn}, executing upon

a single processor platform according to the EDF policy [31].

The processor can vary the clock frequency f by selecting

one of the available frequencies in a discrete set {f1, . . . , fm},

ordered by ascending values. In the following, the normalized

speed s (s = f/fm) is used as a more convenient parameter

(s = 1 denotes the maximum speed).

Each task τi generates an infinite sequence of jobs τi,j ,

with the first job arriving at time zero and subsequent arrivals

separated by Ti time-units. Each job of τi is characterized

by a worst-case execution time (WCET) Ci(s), a best-case

execution time (BCET) Bi(s) and a relative deadline Di equal

to the task period Ti. The computation time of each job at

speed s is within the range [Bi(s), Ci(s)]. The WCET of τi
is computed as Ci(s) = αiC

m
i + (1 − αi)C

m
i /s, where Cm

i

denotes the worst-case time to execute τi at the maximum

speed and αi is the fraction of execution time that does not

scale with the speed (i.e., memory, I/O operations, etc.).

To characterize the power consumption of the processors

when they are active, we adopt the following relation derived

by Martin et al. [32]:

P (s) = K3s
3 +K2s

2 +K1s+K0. (1)

When processors are not needed to be active, low-power states

can be exploited for reducing the power consumption while

code execution is suspended. Each low-power state has a given

power consumption Pσ and a Break-Even Time (BET), i.e., the

overhead time required to enter and exit the corresponding

state. The BET determines the shortest idle interval that must

be available in the schedule to take advantage of the sleep

state. Deeper sleep states characterized by a lower power

consumption have typically longer BETs. In this paper, two

low-power states are considered: idle and sleep. Their break-

even times are negligible and non-negligible, respectively.

IV. LIMITS OF EXISTING APPROACHES

The energy needed to execute a job is the product of the

active power and the execution time at the selected speed.

Note that a higher speed reduces the execution time, but

increases the power consumption. For this reason, the concept

of critical speed s∗ [7] has been introduced for defining the

speed that minimizes the overall active energy consumption.

Analytically, s∗ is computed as the speed that minimizes the

active energy consumption per cycle
P (s)
s , and can be derived

from
dP (s)/s

ds = 0.

As an example, assume a processor with ten speeds uni-

formly distributed from 0.1 to 1.0, and with active power

consumption P (s) = 0.9s3 +0.1. The dominant non-linearity

in the power function makes it a DVFS-sensitive architecture,

where the speed that minimizes the energy consumption is

s∗ = 0.4. When instead the power consumption is char-

acterized by a significant constant component (independent

of the speed), as in P (s) = 0.3s + 0.7, the critical speed

results to be equal to the maximum available (s∗ = 1), hence

speed scaling is not effective to minimize the active energy

consumption. Such a behavior is typical in DPM-sensitive

architectures, which integrate a significant amount of memory,

I/O controllers and other devices whose power consumption

does not depend on the processing speed.

One big limitation of the above approach is that it only

analyzes the active power consumption, neglecting the power

consumed when the processor is not executing. Therefore, the

critical speed gives a reliable indication of the best operating

frequency only if the system is assumed to consume no power

when the processor is idle. As the static power consumed

during idle intervals gets bigger, the critical speed is less

suitable to characterize the best operating frequency of the

processor. To have a more precise characterization of the

power consumption, it is therefore necessary to account for

the time spent in low-power states.

Depending on the ability of the system to exploit deeper

sleep states, the best operating speed can be higher or smaller

than the critical speed. For example, a DVFS-sensitive archi-

tecture with s∗ = 0.4 could be better operated at a higher

speed if the slack created could be spent in a low-power state

with Pσ < P (s∗). Conversely, it could be beneficial to reduce

the speed of a DPM-sensitive platform, even with s∗ = 1, if

the idle intervals are not sufficiently large to allow entering a

low-power state.

Intuitively, the highest consumption is obtained when the

algorithm is never able to put the processor in sleep state, so

that the slack time is entirely spent in the more consuming

idle state. Conversely, a lower bound on the overall power

consumption can be derived considering that any idle interval

fully exploits the deepest sleep state.

Figure 1 shows the average power consumption of a NXP

LPC1768 chip (P (s) = 0.3s + 0.7) for different task uti-

lizations. The power consumed in idle and in sleep state

is taken from real measurements, as detailed in Section VI.

The straight lines represent the upper and lower bounds on

the DPM power consumption, while the staircase line shows

the DVFS consumption obtained from executing the generic

task set at the slowest available feasible speed. Even if the

device is DPM-sensitive, with a critical speed equal to one,

the performance of a simple DVFS approach is rather close to

the ideal DPM performance. Unlike the actual general opinion

that DPM algorithms work always better than DVFS ones, the

example shows that task set characteristics are crucial to decide

which technique works best, as short periods and reduced

idle intervals (or, equivalently, large BETs) can forbid the use

of deeper low-power states, making DVFS approaches more

competitive.

What said above is even more relevant when task compu-

tation times do not entirely scale with the speed, that is when

each task τi has αi > 0. Indeed, memory-bound tasks with a

large constant part αiCi tend to privilege DVFS techniques, as

similar execution times can be obtained executing at a lower

speed, with a smaller power consumption.

Finally, when the entire consumption of the SoC is con-
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Fig. 1: DPM bounds vs. simplest DVFS algorithm.

sidered, the dissipation in low-power states is not as low as

expected, because many components can not be turned off

(such as the main memory), thus reducing the impact of DPM-

based algorithms.

V. ALGORITHMS

This section introduces the algorithms that have been con-

sidered in this paper. Speed scaling algorithms are consid-

ered in Section V-A, while DPM algorithms are analyzed in

Section V-B. Although other recent algorithms might provide

a slightly better performance, the presented algorithms have

been selected for their popularity and their reasonable run-

time complexity, well representing their scheduling class.

A. DVFS algorithms

DVFS algorithms can be further divided according to the

kind of slack (unused computational time) they take advantage

of:

• SVS [12] (Static Voltage Scheduling): only the static

slack (1−
∑
τi

Ci

Ti

) is exploited;

• DRA-OTE [11] (Dynamic Reclaiming Algorithm - One

Task Extension): mostly the dynamic slack due to task

early terminations is used to scale the speed down;

• LA-DVS [12] (Look-Ahead RT-DVS): both static and

dynamic slacks are considered.

The first algorithm, SVS, sets the running speed equal to the

slowest one that guarantees the task set feasibility. Note that

the speed is set at system start time, and it is never changed

during execution. Although the algorithm is simple (the online

complexity is null), it does not exploit task early terminations.

The second algorithm extends the previous idea by intro-

ducing a queue to keep track of task executions. Once a new

job is about to be scheduled, the dynamic slack due to task

early terminations is exploited to further scale the speed down.

In other words, unexploited computation time is passed from

the owner to the executing job.

The last algorithm aims at further reducing the running

speed by executing the task with the earliest deadline at the

slowest possible speed, while pushing pending and incoming

jobs as close as possible to their deadlines. Although the

speed until the first deadline is reduced, a high speed may

be necessary to execute the other tasks.

Whenever the ready queue is empty, the processor is possi-

bly put in low-power state until next task arrival.

B. DPM algorithms

The following DPM algorithms are considered:

• CS-DVS-P [18] (Critical Speed DVS with Procrastina-

tion): the maximum time that a task can be delayed is

computed offline;

• LC-EDF [6] (Leakage-Control EDF): job delays are en-

tirely computed at run-time.

CS-DVS-P computes at design time the maximum amount

of time (Zi) each job of τi can spend in the sleep state within

its period without leading to any deadline miss:

Zi

T i
+

i∑

k=1

Ck

Tk
= 1.

Tasks are sorted by non-decreasing relative deadlines. At run-

time, when there is no pending job, the processor is put in

the deepest low-power state until next job arrival. When a job

arrives and the processor is still in sleep mode, an external

controller keeps the processor in such a state for the minimum

between the remaining estimated sleep time and Zi of the new

job.

Conversely, LC-EDF computes at each job arrival the max-

imum delay the job can suffer without missing its deadline,

extending the time spent in sleep state. More precisely, when

an idle event occurs, LC-EDF computes the maximum exten-

sion ∆k that the first arriving task τk can exploit to fully utilize

the processor:

∑

i∈{1,...,n}/{k}

Ci

Ti
+

Ck +∆k

Tk
= 1.

Then, the sleep time is extended for ∆k units. If another

task τj with absolute deadline earlier than τk’s arrives when

the processor is in sleep, the procedure is executed again,

considering for τk the elapsed delay interval δk since the

previous invocation of the algorithm:

∑

i∈{1,...,n}/{k,j}

Ci

Ti
+

Ck + δk
Tk

+
Cj +∆j

Tj
= 1.

VI. MEASUREMENTS

This section aims at providing a detailed analysis of the

power characteristics of the following processors:

1) Microchip dsPic33FJ256MC710, with frequencies

within [4, 40]MHz with step of 1MHz;

2) NXP LPC1768 (ARM Cortex M3), characterized by

frequencies in [36, 96]MHz with step of 4MHz;

3) Intel Pentium4, providing frequencies from 375MHz up

to 3.0GHz with step of 375MHz.

These architectures have been selected to cover a wide spec-

trum of real platforms, from small digital signal processors to



Processor K3 K2 K1 K0

LPC1768 0.0 0.0 0.3 0.7
dsPic33 0.0 0.0 0.55 0.45

Pentium4 0.0 0.09 0.44 0.47

TABLE I: Parameters of the power models.
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Fig. 2: Power consumption models.

average embedded controllers, including high-level computing

processors.

Except for the last processor, the other measurements refer

to the entire platform (i.e., core, cache, memory and periph-

erals) as everything is embedded on a single chip. Moreover,

only the frequency is scaled, while the voltage is kept constant.

A. Performance evaluation

The following measurements have been carried out running

the Coremark benchmark [33], which implements CPU bound

code (Ci(s) = Ci/s).

The benchmark scores at the maximum speed for the

analyzed platforms are 57 (without hard FPU), 218.7 and

14413.0, respectively.

These results have been achieved on systems with light

workload, meaning that the processor was entirely assigned

to the benchmark in execution.

B. Active state

The power functions of the platforms, considering normal-

ized speed and normalized power, are reported in Figure 2,

whereas the numerical values of the parameters of Equation 1

are summarized in Table I. Note that, on these platforms,

the critical speed is always equal to the maximum available

(s∗ = 1.0).

Concerning the components of the power consumption, the

static dissipation, mostly due to leakage currents, is repre-

sented by the coefficient K0 as it is speed independent, while

the rest of consumption is ascribed to the dynamic dissipation.

Note that the static component includes the consumption due

to the cache, which can not be turned off.

Considering the absolute power consumption, the dsPic and

the LPC1768 processors have similar consumptions (0.56W

and 0.695W, respectively), but the latter is around four times

more performing. On the other hand, the Pentium4 consumes

88.8W when active.

C. Low-power states

Concerning the low-power states, the dsPic processor pro-

vides two states: Idle and Sleep. The first one switches few

components off, leading to a consumption equal to 66% of

the power at the maximum speed, with a state transition of 8

clock cycles. The Sleep state consumes 31% of the maximum

power, with a break-even time around 15ms (the clock crystal

and PLL are put off).

The LPC1768 offers Sleep, Deep Sleep, Power Down, and

Deep Power Down states, which consume, with respect to

the consumption at the maximum speed, 90%, 70%, 70% and

65%, respectively. The overhead is negligible for the lighter

state, whereas it takes about 10 milliseconds for the deepest.

On the Pentium4, the ACPI module exploits only a single

state, called Idle, with a relative consumption of 34% and a

break-even time of a few hundreds milliseconds.

VII. EXPERIMENTAL RESULTS

This section presents a set of simulation experiments carried

out for evaluating the considered algorithms on the different

platforms under different scenarios.

The synthetic task sets are composed of 10 tasks randomly

generated using the UUniFast algorithm [34]. For each uti-

lization step of 0.05, 30 different task sets were generated and

tested.

The speed scaling overhead (in the order of µs) was consid-

ered negligible with respect to the task execution times (in the

ms). The frequencies of buses and memories were assumed to

be constant and independent of the processor frequency.

The following simulations are divided into three categories:

analysis of the algorithm performance in the worst case, online

improvement due to task early terminations and impact of

speed-independent code.

A. Worst-case analysis

This section presents the average power consumption ob-

tained by the considered algorithms assuming always the

worst-case execution. Since task early terminations are not

considered, the algorithm DRA-OTE is not taken into account

as it would exhibit the same performance of SVS. Compu-

tation times are assumed to scale linearly with the speed

(∀τi ∈ Γ : αi = 0).

The results are reported in Figure 3 considering two sce-

narios in which the shortest task period is larger than or

comparable to the sleep break-even time, respectively. When

the shortest period is much larger than the break-even time,

DPM-based algorithms tend to work better, especially at lower

utilizations when a considerable amount of slack is available.

When instead the shortest period becomes comparable to the

break-even time the performance of DPM-algorithms drops

significantly.

The first case is shown in Figure 3a, 3c and 3e, where pe-

riods are generated in the range [25, 250]ms for the dsPic and

LPC1768, and in the range [300, 3000]ms for the Pentium4.

Among DPM algorithms, CS-DVS-P has always a lower

consumption than LC-EDF. Among DVFS-based approaches,



SVS and LA-DVS obtain the same performance on the dsPic

because the power function is linear. For example, consider

a job of 10ms. When it is executed at s = 0.5, hence for

20ms, the energy consumption is 14.554 mJ. If the same job is

executed for 15ms at s = 0.3̄ and for 5ms at s = 1.0, leading

to the same overall execution time (20ms), then the overall

energy consumption is again P (0.3̄) ·15+P (1.0) ·5 = 14.554
mJ. Hence, an aggressive DVFS algorithm may be ineffective

when the power consumption is linear. However, LA-DVS

consumes less than SVS on the other two platforms because

the limited number of speeds does not allow SVS to exploit

the entire static slack. The best DPM algorithm (CS-DVS-P)

has always a better performance than DVFS ones, although the

difference is rather small for the LPC1768 due to the limited

savings allowed in sleep mode with this architecture. Instead,

LC-EDF has always the largest power consumption.

In the second case, the minimum task period is decreased,

becoming comparable to the low-power state transition over-

head (Figure 3b, 3d and 3f). More precisely, periods were

generated in the range [8, 80]ms for the dsPic and LPC1768,

and in the range [100, 1000]ms for the Pentium4. As expected,

while the performance of DVFS strategies remains the same,

that of DPM algorithms drops significantly, making DVFS

strategies more competitive.

B. Average execution analysis

This section considers the average power consumption ob-

tained by the algorithms taking into account that jobs may

terminate earlier than their worst case. More precisely, the

actual execution time of each job of τi is generated in the

range [Bi = Ci/10, Ci].
The results for the three platforms are shown in Figure 4,

assuming periods in [25, 250]ms for the dsPic and LPC1768

platforms, and in [300, 3000]ms for the Pentium4 (shortest

period larger than sleep BET).

The trend among DPM algorithms is not altered, with CS-

DVS-P still guaranteeing better performance than LC-EDF.

Among DVFS techniques, SVS does not improve as it cannot

take advantage of the online slack freed by task early termi-

nations. However, DRA-OTE has always worse performance

than SVS, because it scales the speed down in order to make

jobs last as long as the worst case. Since the critical speed is

equal to the maximum one, DRA-OTE increases the energy

consumption without introducing any benefit. LA-DVS is the

best DVFS algorithm as jobs can usually end before scaling

up to high speeds, leading to a lower consumption.

Similarly to the previous analysis, decreasing task periods

makes DPM algorithms much less effective than DVFS ones.

The above trend is the same when computation times have

different variances between worst and best case execution

times.

C. Speed-independent code

This section analyzes the case in which computation times

do not fully scale with the speed. As explained in Section III,

such a behavior is modeled by the α parameter. More precisely,

α = 0 means that the computation fully scales with the speed

(C(s) = C/s), whereas α = 1 leads to a constant computation

time, completely speed independent.

For example, a job with α = 0 that lasts for 10ms at the

maximum speed, will take 20ms when executed at s = 0.5. On

the other hand, if α = 0.5, only half of the execution time is

scaled with the speed, so that the job would last for 20ms when

executed at s = 0.3̄. Both cases have a similar completion

time, but the second one has a lower speed, resulting in a

smaller power consumption.

Figure 5 reports the average power consumption on the

LPC1768 processor when ∀τi ∈ Γ : αi = 0.5. Execution

times and periods are generated as in the previous experiment,

within [Bi = Ci/10, Ci] and [25, 250]ms, respectively.

The introduction of speed-independent code improves the

performance of DVFS algorithms. More precisely, with respect

to the equivalent analysis in Figure 4b (α = 0.0), the

performance of LA-DVS gets very close to that of CS-DVS-P,

while SVS becomes more convenient than LC-EDF. The only

DVFS algorithm that does not take a significant advantage

from speed-independent sections of code is DRA-OTE.

The performance on the other two platforms shows the

same trend. In general, the effectiveness of DVFS algorithms

increases with the fraction of speed-independent code, as

foreseen in Section IV.
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Fig. 5: Average power consumption considering task early

terminations and ∀τi : αi = 0.5.

VIII. CONCLUSIONS

This paper presented a comparison of several well-known

DVFS and DPM algorithms, showing their behaviors on dif-

ferent scenarios and considering three processors widely used

in their respective domains.

Results confirmed that the actual assumption stating that

DPM algorithms work generally better than DVFS ones on

actual hardware is true. However, experiments also highlighted

that such a consideration can easily be invalidated when other

aspects are involved in the analysis. For instance, short periods

can drastically reduce the effectiveness of DPM algorithms,

and tasks that intensively interact with peripherals can make

DVFS algorithms more effective. In addition, it was empiri-

cally shown that task early terminations help both DPM and

DVFS algorithms in further reducing the energy consumption.
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(a) dsPic with periods in [25, 250]ms.
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(b) dsPic with periods in [8, 80]ms.
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(c) LPC1768 with periods in [25, 250]ms.
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(d) LPC1768 with periods in [8, 80]ms.
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(e) Pentium4 with periods in [300, 3000]ms.
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(f) Pentium4 with periods in [100, 1000]ms.

Fig. 3: Average power consumption assuming worst-case execution.

As future work, we aim at extending such an analysis to

multi-core platforms, as they represent the actual cutting-edge

research topic.
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