The Parallel Supply Function Abstraction for a Virtual Mult iprocessor

Enrico Bini, Marko Bertogna Sanjoy Baruah
Scuola Superiore Sant’Anna The University of North Carolina
Pisa, Italy Chapel Hill, NC, USA
Abstract

A new abstraction — the Parallel Supply Functid?SF) — is proposed for representing the computing capabilities
offered by virtual platforms implemented atop identicalltiptocessors. It is shown that this abstraction is stiycthore
powerful than previously-proposed ones, from the per$gectf more accurately representing the inherent paradhaliof
the provided computing capabilities. Sufficient tests sgeved for determining whether a given real-time task syste
represented as a collection of sporadic tasks, is guarahteealways meet all deadlines when scheduled upon a specified
virtual platform using the global EDF scheduling algorithm

1 Introduction

There has been an increasing trend in embedded real-tinensyslesign and implementation towawjsenenviron-
ments [8], in which multiple independently-developed é&silons can be implemented upon a single shared platfotra. T
typical approach towards providing scheduling supportichsopen environments is through the use of a two-level sched
uler: the top level scheduler allocates resources to thieusico-implemented applications, and each applicatimcal
scheduler then schedules the jobs comprising the applicdtiring the time allocated by the top-level scheduler. rGive
past decade or so, sophisticated frameworks and archiésdtave been proposed for implementing such open envimisme
upon preemptive uniprocessor platforms.

Along with this trend towards open environments, there ifareasing move towards implementing embedded real-time
systems upomultiprocessofand multicore) platforms. The use of such parallel architess yields many benefits — great
increases in computing capabilities at lower cost; greatergy efficiency; etc. However, these multiprocessoifquiiats
present a programming model that is far more complex thasetbeed in the classical uniprocessor context. In order ke ma
it easier to build open environments which can offer supfoonprovably correct applications upon multiprocessotfplans,
it is desirable to desigabstractionsthat conceal much of this additional complexity from the laggtion designers and
implementers, instead providing them witherfaceghat are easy to use and to formally reason about. That isgoeirces
allocated by the top-level scheduler should be succindtstracted out into, and described by means of, an interésaeh
local scheduler would, in effect, be designed to execute@ptvirtual platform” that behaves as described in thisrifatee.
(Such an approach has the added benefit of de-linking apiplicenplementation from the platform upon which it will
reside, and of allowing for an easier migration of applimas among platforms: as hardware is upgraded to a more pdwerf
platform, it is sufficient to ensure that the virtual proaggsrovided by the global scheduler on the new hardware igtiant
with the interface previously established.) This papeprepon our recent research towards designing such an etistra
and interface, under the assumptions that (i) the underiyinltiprocessor platform is fully preemptive and suppgitbal
scheduling; (ii) the top-level scheduler provides eachiagfion with zero or more identical (and hence indistirgiable)
processors at each instant in time; and (iii) each indiMidpalication can be modeled as a collection of sporadicstésée
Section 2).

In proposing an abstraction, there is typically a tensiamwben the degree of detail that is abstracted away, and $ise lo
of accuracy that results from such information-hiding. Thallenge is to come up with the appropriate abstractioh tha
hides enough information so that it is relatively easy tddprovably correct applications upon the resources pexvidly
the interface, while minimizing the resulting loss of a@ay. For open systems implemented on uniprocessor platform

the parameters in the proposed interfaces that appear éol®n most effective have been indicators of (i) the longrte
averageeomputing capacityhat is offered; and (ii) théme granularityat which this computing capacity is made available.
Specific examples of such interface implementations irelihé various budget-period servers (e.g, [14]), and thealir
processor abstractions (e.g., [13, 15]) — additional eXxamgre listed in Section 5.

Upon multiprocessors, Shin et al. [16] proposed an extergdfithe budget-period abstraction to multiprocessor ptats,
by adding a third parameter — tin@aximum degree of paralleliss- to the interface specification. This is a wonderful idea
since it explicitly recognizes the critical role of the degrof parallelism in multiprocessor schedulability: infadly and
intuitively speaking, the lesser the degree of parallelisthe provided budget, the better guaranteed use the lolcatisiler
can make of it. However, we feel that [16] did not go far enouglexposing underlying parallelism — by representing
all parallelism-related information by a single parametbey, in our opinion, erred too much in favor of simplicity b
abstracting away too much information at a cost of a conalulerloss of accuracy. Bini et al. [6] proposed to remedy this
shortcoming by representing the interface built upon aretgithg m-processor platform with (the supply functions of)
distinct virtual processors; by using the knowledge of ¢heistual processors’ supply functions, it is possible talaee
additional information bounding the degree of paralleliarthe budget supplied via the interface.

Our contributions In this paper, we propose thrarallel Supply FunctiorfPSF) abstraction and associated interface for
use upon multiprocessor platforms. We show (in Sectiond)tthis is a superior abstraction to the one in [6], in the s¢inat
even more information can be deduced regarding the degpagalfelism in the budget represented & while not being
any more complex to represent or reason with than the altisingaroposed in [6]. We present, and prove the correctniess o
sufficient schedulability tests for determining whetheiseg application, represented as a collection of sporadiks, can
be scheduled upon a specified interface when the local sthga@lgorithm used is Earliest Deadline First (EDF).

2 Terminology and notation

In this section we describe the formal models we use to reptdsoth the virtual multiprocessor platforms and the
applications.

2.1 Modelling virtual platforms

Each individual application is scheduled onto a dedicaitedal platformII, which may provide computing capacity upon
multiple processors in parallel. Our formalisms do not $gt@onstraints on the techniques used by the virtual platfdr
to provide execution cycles to the applicatibr— the platformII could, for instance, be implemented by many sequential
servers, static partitions of the processors over timear Bfather global schedulers, etc. We will take a closer labkirtual
multiprocessor platforms in Section 3.

Figure 1 illustrates a virtual platform that supplies tinbe@rding to two static partitions: one that provides 2 timésu
every 4, and another one that provides 4 every 8. In Sectior @il use this example partition to illustrate some of the
definitions.

0 2 4 6

Figure 1. Example of a periodic static partition.

2.2 Modeling applications

We model an application as a setsofsporadic tasks = {r;}}_,. Each task; = (C;,T;, D;) is characterized by a
worst-case computation tim@;, a minimum inter-arrival timel; (also referred to as period), and a relative deadlihe
Each taskr releases a sequence of johs,, where each job is characterized by an arrival timg, an absolute deadline
d; 1, @ computation time; . We have that; ,, < C;, r; , > r; x—1 + 15, andd, , = 7 + D;. In this paper, we assume a

3C5

2C%

o]

Q
o]

>t
D; T; TH+D; 2T; 2T:+D; 3T;

a|Q

Figure 2. lllustrating FF-DBF(7;,t,0).

constrained deadlinenodel, whereD; < T; for all . We also selD,,;,, = min; D;. Time is continuous and time variables
are represented by real numbers.

The forced-forward demand bound function Let r; denote a sporadic taskany positive real number, amdany positive
real numbek 1. Theforced forward demand bound functier-DBF(7;, t, o) is defined as follows:

FF-DBF(Ti,t, O') L qlCl 4+ Cz — (DZ — TZ')O' if Dz > > Dl — % (1)
0 otherwise

where

qid:ef \‘iJ and r; £t mod T},
T;

Informally speaking,FF-DBF(7;,¢,0) can be thought of as a bound on the demand;dbr interval-lengtht, when
executionoutsidethe interval occurs on a speedarocessor. This function is illustrated for an example iagkigure 2.

The FF-DBF concept is easily extended from individual tasks to appitices that are modeled as collections of sporadic
tasks: for any such applicatian

FF-DBF(7,t,0) £ Y FF-DBF((,t,0)
TeET

It is evident from the definition ofF-DBF (Equation (1)) thatF-DBF(, s, t) can be computed very efficiently, in polyno-

mial time — see, e.g., [3] for further detalils.

Some additional notation that we will use. Letlenote an application that is modeled as a collection ofasportasks,
andr, any task inr:

densityd;, = C, /Dy,
utilization Uy, = Cy /T,

maximum density £ max §;
T;ET
total utilization &£ Z U,

TiET

Finally, we will use(z), as a short fomax(x, 0).

3 The parallel supply function abstraction

The need of developing the applications independently efuthderlying hardware strongly motivates the investigatio
of interfaces for multiprocessor platforms. As stated &ytowever, it is important that the interfaces used retsmuch
as possible, information regarding the degree of paraftein which execution capacity (the “budget”) is suppliedthg
interface. In [16], such information was communicated Via ihaximum parallelisnparameter. (The example virtual
platform of Figure 1 is thus represented in the Shin et at. eh{ib] by a budget of 8, a period of 8, and a maximum
parallelism of 2. Hence, this formalism abstracts away thiemqtially useful information that only 4 of the 8 units okth
budget occurs upon parallel processors, and that somegsaces available for 6 units of time out of every 8.) In [6],

more parallelism information could be communicated viardarface called th#ulti Supply Functio(MSF). TheMSF is
described in detail in Section 5, where it is shown that elieMSF interface has some shortcomings with regard to retaining
parallelism information.

To overcome the limitations of tHdSF, we start by generalizing the concept of time partition ®tiultiprocessor case.
Recall from [15] that this concept was introduced to forpadipresent the availability of a processor that is not neanrdyg
continually available; ime partitionrepresents the availability of such a processor by a catlectf time-intervals, denoting
the times when the processor is available. Since there altgolayprocessors in a multiprocessor platform, the extansf
time partitions to multiprocessors must be able to repitetberaggregation of the time partitions of all the processor

Definition 1 A time multi-partition? is a countable multisétof intervals, formally

def

P = {las, bi) bien.

Intuitively, P is the aggregation (the “multi-union”) over all the proaassin the platform, of the time partitions of each
processor. Without loss of generality we set the instantnathe virtual platform is created equal 6o Hence we have
a; Z 0, Vi S N.

A time multi-partition represents the instants over timeewlthe virtual platform allocates time to the applicatioor F
example, the multi-partition of Figure 1 is

P = {[4k,2 + 4k), [8k, 4 + 8k) }ren.)

For a given multi-partition, our objective is to define a able abstraction that represents the execution capagplisd
by this multi-partition, while retaining information abtihe degree of parallelism present in this supply. We staddiining
the characteristic functiof, of any subsel C R

w)"é‘{; o @

and the characteristic function of a multi-partition

W ZE D Ve) (4)

[ai,bi)GP

The characteristic function of the multi-partiti@hof Figure 1 is depicted in Figure 3.

0 2 4 13 8
Figure 3. Example of characteristic function vp.

For a given multi-partitior?, it is useful to define the maximum degree of parallelism devi.

Definition 2 Given a multi-partitiorn’?, we define the maximum degree of parallelism as

M gef t 5
(P) = maxp(t) ()
For the multi-partition depicted in Figure 1, the maximungee of parallelism is equal to two.

Definition 1 provides a formal notation for the exact repreaion of virtual multiprocessors that are not contingall
available. However, it is often not desirable in practicegpresent such virtual multiprocessor in an exact manoer, f

1In set theory, anultisetis a generalization of a set, in which individual elementsy mecur multiple times. Each such occurrence counts as aatepa
element of the multiset.

several reasons. First, too much information is not alwaseful and can render programming and analysis cumbersome
— indeed, concealing some detail is the very idea behindadigin and information-hiding. More critically, it is psible

that all the knowledge is simply not available at design gmet#ication time; more typically, the exact availabilititbe
virtual processors depends on run-time events such asntmmevith other virtual multiprocessors that are sharimg same
physical platform, and hence only becomes known duringtime-: The best we can do during specification and design
time is specify bounds on the supplied computing capacitgh®ounds are conveniently modeled by charactessiiply
functions as follows.

Definition 3 Given a multi-partition?, we define théevel-j supply functionY; »(¢) as the minimum amount of time pro-
vided by the multi-partition in every interval of time of ggh¢ > 0 by at mostj intervals in parallel. That is

to+t
Vip(t) = iy [mingj,p(0) do. (6)
to

We believe that this definition captures properly the amoéinrésource provided by a multi-partition, by investigatthe
number of processors that supply the resource simultaheous

Below we provide some simple properties of the leyeiupply functionsY; ». Notice that when comparing any two
functionsf, g : R — R, when we writef < g we mearit f(t) < g(t).

Lemma 1 For any multi-partition”, we have

Yop =0, (7
Vi>0, Yjip2>Yp, (8)
Vji=M(P), Yjp=Yjp, 9)
Vizl, Yjp—Yj1p =Y —Yjp. (10)
Vi > 0¥s,t >0, Yip(s+1t)>Yp(s)+Yn(l) (11)

Proof All the properties follow from Definition 3.
Whenj = 0, the minimum of Eq. (6) is constantly zero, becayse> 0. HenceY; » = 0 for anyP, proving Eq. (7).
For any integek, we havemin{j + 1, k} > min{j, &} that proves Eq. (8).
Proof of Eq. (9).
vt >0, j=M(P)=vp(t) = min{j,yp(t)} =vp(D),

Hence, whery > M(P), we have

VE20, Yip(t) = Yisrp(t) = min /[G
- 0,0

Proof of Eg. (10). Equation (10) is equivalent to
Vi>1, 2Y;p>Yjp+Y_1p.
We prove it by showing that
Vk e N, 2min{j,k} > min{j + 1,k} + min{j — 1, k}.

In fact, whenk > j + 1, then

2min{j, k} = 2j

min{j + 1,k} + min{j — 1,k} = j+ 14— 1 =2j;
whenk < j —1,

2min{j, k} = 2k
min{j + 1, k} + min{j — 1, k} = 2k;

finally, whenk = j,
2min{j, k} = 2j
min{j + Lk} +min{j — Lk} =j+j—-1=25—1,

which proves the desired property.
We conclude by proving that; » is superadditiv€ Equation (11)). For any functiofi: R — R, we have

to+s+t to+s to+s+t
min/ flz)da = n%in < (z)dz + / f(:z:)dx)
¢ 0 t

to

0 to o+s
to+s to+t
> min f(x)dx + min f(x)dz
0 t[) 0 t()
from which it follows Eq. (11), wherf (z) = min{j, vp(x)}. a

Definition 3 requires the knowledge of the exact time muditftion P corresponding to the virtual multiprocessor plat-
form under discussion. As discussed above (prior to DedimiB), such information is often known only at run-time (aod n
at design time) since the actual allocation typically dejseon events (such as contention with other VPs) that cahwaya
be predicted during design time. In the following, we ext@adinition 3 by removing the need for such a knowledge.

Definition 4 Given a virtual multiprocessor platforifi, we defindegal(II) as the set of multi-partition® that can be
allocated byiI.

The maximum degree of parallelism, and the leyedupply functions, of a virtual multiprocessor platform atefined
generalizing the analogous concepts for individual mpatititions.

Definition 5 Given a virtual platformil, we define its maximum degree of parallelism as

m= max_ M(P) (12)
Pelegal(I])

Definition 6 Given a virtual platformll, its level-j supply functionY;(¢) is the minimum amount of time provideaith
parallelism at mosj, by the serveil in every time interval of length> 0,

Y;(t) £ min_ Yp(1). (13)
Pelegal(I])
Notice that the properties of Lemma 1 hold also for Yhdevel-j supply functions, because they hold for #igr functions,
for any multi-partitionP.
We are now ready to define the Parallel Supply Functi®F) of any virtual platformiI.

Definition 7 We define the Parallel Supply FunctiddSF) interface of the virtual platfornil as the se{Y;(¢)}2, of the
level-j supply functions.

The introduction of th&SF allows a more precise characterization of the time supjpealvirtual platform. We illustrate
this on the simple example of Figure 1. In the virtual platidi corresponding to this figure, the time is allocated stdical
to the two servers, hendegal(II) is composed of one single multi-partitidn (the one given by Eq. (2)). For this multi-
partition’P, the corresponding characteristic functipnis depicted in Figure 3. If we compute the levednd level2 supply
functions from Definition 3, we can find the two functio¥ig(t) andY>(¢) reported in Figure 4.

Similarly to what is done for single processor hierarchgaieduling [13, 15, 17], we find it useful to lower bound the
parallel supply function¥j (¢) with a linear functiony; (t—A ;). SinceY; is superadditive (Equation (11)), a result attributed
to Fekete [10] ensures that the following limit exists:

w o Yi(t) Y;(t)

lim —*% =sup —~= (14)

Qj
t—-+oo t t t

Notice also thaty; < j, from Eq. (6). Hence, by defining

A e sup {t — YJ—(t)} (15)
t

@

6

2 4 6 8

Figure 4. The level- j supply functions Y7 (¢) and Y>(t) for the example of Figure 1.

the levels parallel supply function can be conveniently lower bouniigd
Yj(t) = ot — Aj)o- (16)

The PSF is anabstractionof the computing capabilities of the virtual platform, raththan its exact representation. One
of the consequences of this fact is that none of the multitfars that could be generated by a particular virtualfpla IT
may correspond exactly to the characterizatioflddy its Y} (¢) functions. We can nevertheless assert lower bounds on the
durations for which individual processors must be madeavia over any time interval in any multi-partition that ¢dbe
generated byl, as follows.

Let us arbitrarily assign a total ordering to the processotise physical platform upon whid is implemented, so that it
makes sense to talk of th&h processor”; , 1 < j < m. Consider an arbitrary multi-partitioR of II, and some interval of
lengthL; at any instant in this interval at whigh makes fewer tham processors available, we witthamé the processors
in order to choose which of the processor$, . .., P, are available, in the following manner:

e by definition,IT makes> Y7 (L) units of non-parallel execution available over the intentaet us “assign” exactly
Y1 (L) of this execution to the first processBy, in the sense that we will name the processor(s) on whicleggsution
has occurred fo¥; (L) time units asP;;

e similarly, IT makes at least>(L) units of execution with parallelism at most two availableothe interval. Let us
again assigniYz (L) — Y1 (L)) of this execution to the second processor

e in a similar vein, we can assign exactly; (L) — Y;_1(L)) units of execution to thg'th processorP;, for eachj,
1<5<m;

e observe that since thg;(L)’s denotelower boundson the amount of computing capacity that must be available in
the partition, the actual availability of execution capadén 7 may exceed the amount assigned in the steps above.
Once all these assignments have been done, thereforentl@ieg execution can be arbitrarily assigned among the
processors (over time durations when they have not alrea€ly assigned execution during the above steps).

As a consequence of the above argument, it follows that

Lemma 2 Let IT be a virtual platform characterized by the supply functid§(¢)}2,. For any multi-partition’ in
legal(IT) and any interval of lengtii, there exists a dynamic renaming of the processors oventkeval such that thg’th
processor is available for at lea$t’; (L) — Y;_1 (L)) time units over this interval ifP.

2We point out that we are not actually requiring that the aHplatform be implemented to make allocations in a manrardbrresponds to our renam-
ing — this is a mere notational convenience. Since we arégtsg our attention here to virtual platforms implemahtgon identical multiprocessors, we
can always rename processors for the purposes of reasdiongthe schedule, without loss of generality.

fori« 2,3,...do

let J; denote a job that
—arrives at some time-instaht< t;_1;
—has a deadline aftey_q;
— has not completed execution by ;; and
— has executed for strictly less the_; —t;)

units over the intervdk;, t;—1).
if there is no such jothen

k—(i—1)
break (out of the for loop)
end if
end for

Figure 5. Proof of Theorem 1: defining the J;’s, the ¢;'s and k.

4 Schedulability analysis

In this section, we derive two sufficient tests for determinivhether a given application, modeled as a collection of
sporadic tasks, can be scheduled to meet all deadlines whedwwed upon a virtual platforii using global EDF as the
local scheduling algorithm. The first method borrows theaidé forced forward demand bound function [3] and allows
deriving a schedulability condition with pseudopolynohgiamplexity. The second test, inspired by Bertogna et lhfs
polynomial complexity. It derives an upper bound on theriieténg workload generated over the scheduling window chea
task, and checks whether it is sufficient to cause a deadlisg rBince none of them is proved to dominate the other, both
can be used for admission control.

The tests consider an applicatiercomposed of:, sporadic tasksy, ..., 7,. The virtual multiprocessor platform, de-
notedll, has its maximum parallelismm, and is characterized by its parallel supply functi®$F) abstraction, denoted

{Y5(6) 7y
4.1 rr-pBF based schedulability test

In this section, we present a sufficient schedulability ¢tiod based on the concept Bf-DBF, as defined in Section 2.2.

Theorem 1 Any constrained-deadline sporadic task systesatisfying
VL > Dyin, FF-DBF(T,L,d) < max{Yj(L) — (k — 1)0L} (17)
is guaranteed to be EDF-schedulable uddn

Proof Let us suppose that sporadic task systeimnot EDF-schedulable dr, and let us consider a minimal sequence of
jobs of r upon which EDF misses deadlines when implementetiiohet ¢, denote the (first) instant at which a deadline
miss occurs in such an EDF schedule. Letdenote a job that misses its deadlineg atand lett; denoteJ;’s arrival-time.
(Observe thatt, — t1) > Dmin.)
We define a sequence of joldg time-instantg;, and an index;, according to the pseudo-code in Figure 5.
def

Let L denote the length of the intervg, t,): L = (to — tx). For each, 1 < i < k, let W; denote the total amount of
execution that occurs over the interyigl ¢;_1).

Lemma 1.1 FF-DBF(7, L, 3) > S W,

Proof All jobs that execute int, t,) (and hence contribute '@:f:l W;) have their deadlines within the interval., ¢,).
Some of them will also have arrived within this interval, Vehdthers may not.

Now it may be verified that the amount of execution that jobarof taskr, contribute ttoZl W, is bounded from above
by the scenario in which a job ef has its deadline coincident with the end of the interval, @mal jobs have arrived exactly
T, time-units apart. Under this scenario, the jobsathat may contribute tQ:fZl W, include

e atleasty & | L/T;| jobs ofr, that lie entirely within the intervdky, t,); and
e (perhaps) an additional job that has its deadline at tinsaitt;, + r, wherer, £ L mod 7.
We now consider two separate cases:
1. r, > Dy; i.e., the additional job with deadline gt + r, arrives at or aftet;. In this case, its contribution iS,.

2. ry < Dy; i.e., the additional job with deadline & + 1y arrives prior tof;,. From the exit condition of the for-loop, it
must be the case that this job has completed at @3t — r,) units of execution prior to time-instant; hence, its

remaining execution is at mostax(0, Cy — 6(Dy — ry)).

In either case, it may be seen that the upper bound on thecmtalibution ofr, to Zle W; is equal toFF-DBF(7¢, L, §)
(see Equation 1). The lemma follows, by summing over allgagke 7.]

Lemma 1.2 Some execution occurs at all the time-instantg4nt,) during which the virtual platfornil makes one or more
processors available.

Proof Consider each intervéd;, ;). By definition of j;, it arrives att; and has not completed executionty; ; hence,
EDF will execute it whenever processors are available. s out the existence of a time-instant of#gr¢; 1) during
which some processor is available, but no job — not ejer- is executing. The lemma follows by summing overaall
1<i<k, |

Lemma 1.3 The total duration of all time-intervals ovéty, ¢,) during which processors are made available by the virtual
platformII, but are not being used in the EDF schedule, is strictly lbasit L.

Proof Foreach, 1 < i <k, letz; denote the total length of the time-intervals oj¢grt;) during which jobJ; executes.
Since jobJ;, by its definition, arrives af; and has not completed executionty , all the processors thét makes available
over this interval must be executing some job whenelés not. Furthermore/; is chosen such that; < &(t;_1 — t;);
hence, the total duration of all the time-intervals olgr¢; 1) during which processors are made available by the virtual
platformTI, but are not being used in the EDF schedule, is strictly leasd(t;_; — t;). The lemma follows by summing
overalli, 1 <i < k, and using the fact that = S°F_ (t; —t;_,). O
Recall from Lemma 2 that thgth processor is allocated in any multi-partitionkdffor at least(Y; (L) — Y,_1(L)) time
units over the intervdky, t,). As a consequence of this fact and Lemma 1.3 jttieprocessor therefore completes at least

max (0, ((¥;(Z) = Y;-1(1)) - 31))

units of execution ovelty, t,), for eachj > 1; while, by Lemma 1.2, the first processor completes at [Ba&t) units of
execution. By Lemma 1.1, we therefore have

FF-DBF(7, L, 0)

> Yi(L)+) max (0, ((V;(L) = Y;_1 (L)) — SL))

= V(L) + Y (0~ Yim(L) -
min((Yj (L) — ijl(L)),gL))

= Yn(L)— Zmin((Yj(L) ~Y;_1(L),5L).

9

We have thus shown that in order foto not be EDF-schedule dm, it is necessary that
FF-DBF(r, L,8) > V(L) — min(Yj(L) - YH(L)),SL) (18)
j=2

for someL > D, i,.

The RHS can be further simplified. From Eq. (10) it followstttiee values’; (L) — Y;_, (L) are decreasing with. Let
k* be the greatest index in the summation wheredttwe of the RHS is given by L (when the minimum is always given by
Y;(L) —Y;_1(L), we setk* = 1). Then, the RHS becomes

m k*
Yo(L)= D0 (G(L) = Yjma(L) = 0L =
j=k*+1 j=2

Since for any other indek # k*, B B
Yi(L)— (k— 1)L <Y (L) — (k* — 1)L,
it follows B B
m,f“x(yk(L) —(k—1)0L) =Y (L) — (k* — 1)L.

Eq. (18) can then be rewritten as B _
FF-DBF(T, L,§) > m]?X(Yk(L) — (k—1)4L) (19)

for somelL > D,,;,. Theorem 1 immediately follows, as the contrapositive efabove statement. O

A schedulability test Theorem 1 suggests the following strategy for checking tred given sporadic task system is not
EDF-schedulable on a specified virtual platforindetermine whether there is aly> D,,;, satisfying Inequality (19). If
not, thenr is guaranteed to be EDF-schedulabldtn

While D, represents a lower bound on the range of values &dr which Inequality (17) must be tested, we do not
yet have an upper bound. Hence, while we could start Inagu@lr) with . «— D,,;,, and repeatedly increase the value of
L being tested, it is not immediately evident when it would bfedo stop and conclude thatis in fact schedulable. To
determine an upper bound férthat allows stopping the check of Inequality (17), we extaridchnique previously used in
uniprocessor [4] or multiprocessor [3] EDF schedulabiigsts.

A linear lower bound of each levglparallel supply function is given by Eq. (16). It is eviderdrh the definition of
FF-DBF (Definition 1; also see Figure 2) tha®; + ¢ U;) is an upper bound oRF-DBF(7;,¢,§) for anyt. Then, an upper
bound for the LHS of Inequality (19) is

FF-DBF(,L,0) < LU + » C;. (20)
TiET
For the RHS of Inequality (19), an obvious lower bound is oted applying Equation (16) for all values bfthat is
mkax{ak(L — Ag)o — (k—1)8L}. (21)

Substituting all these bounds into Inequality (19), we dode that in order for to not be EDF-schedulable, itis necessary
that somel > D,,;, satisfies

Yk, LU+ Y Ci>on(L—Ay) = (k—1)0L
TiET
Ap+>. . C
vk, L< B e G
ap —U—(k—1)
Ag + C;
L < min A ko ZTZET — .
koap—U-—(k—1)0
Hence if Inequality (19) is to be satisfied for any valuelgfit will be satisfied for somd. no larger than the bound in
Equation (22) above. Equivalently, if we have verified theduality (19) evaluates to true for all values/ofip to the bound
in Equation (22), we can safely conclude that task systésrindeed schedulable on the virtual platforhwhen global EDF
is being used as the local scheduling algorithm.

(22)

10

4.2 Demand based schedulability test

The second schedulability condition we present is basedeadncept of interfering worklodd’,,, defined as the sum of
the execution times of higher priority jobs interferinggn Bertogna et al. proposed the following bound [5]:

— " |'D D
We<Wi=>_ {?’“J Cierin{Ci, Dy — {?’“J Ti} (23)
=1Lt ¢
#k

The interferencd), denotes instead the total duratior{in Dy,) in which 7, is ready to execute but it cannot be scheduled
due to higher priority jobs or unavailable supply.

In [6], a method is presented to bound the interferelcas a function of the interfering worklodd;, when the virtual
multiprocessor is abstracted through M8F interface. The next theorem adapts this method td®BE model adopted in
this paper.

Theorem 2 Consider a task set that is scheduled on a virtual platforid with maximum degree of parallelism, that is
characterized by theSF {Y;(t)}72,. Then, for each task;, the interferencd, is upper bounded by

(—
_ m . (Wk — Zp:é pr)
Ik§ Ik:L() Jerln Lz, 0 (24)

£=1 ¢

with {L,}}, equal to
Lo = Dy, — Y1(Dk)
Ly = 2Yi(Dy,) — Yoo 1(Di) — Yeu1(Dy) (25)
L = Ym(Dy) — Yo_1(Dy).

Proof In [6], a similar theorem is proved for the case in which thatfolrm is specified by means of a setrafindividual
supply functions{ Z; (D)} 72 ,, whereZ; (D)) represents the minimum supply granted by fkté virtual processor in any
interval of lengthD,,. The only difference lies in the valugg.,}}” ,, which were defined as

Lo = Dy, — Z1(Dy)
Ly = Zy(Dy) = Ze+1(Dy) (26)
L = Zm(Dg).

We need to adapt this result to the case in which the platferspécified with the parallel supply functiofis; ()}, .

By Lemma 2, we know that for each platform represented¥jyt)}”" ,, we can dynamically rename the processors over
any interval of lengthDy,, such that the-th processor is available for at leg3t;(Dy) — Y;—1(Dj)) time units over this
interval. This means that the platform can be representeeiy a set ofm individual supply functiong Z;(Dy,) } 724,
such that

Z;j(Dy) = (Y;(Dr) — Yj-1(Dy))-
The theorem follows replacing;(Dy) in Equation (26) with the above expression. Note that, by inend, eachL, is
non-negative, for alf. a

The next theorem easily follows, considering that a neecgssandition for a deadline miss is that a taskshould be

interfered for more than its sladk;, — Cj..

Theorem 3 A task setr = {r;}7_, is schedulable with EDF on BSF platform modeled byY;}7" ,, if
Vk=1,....n Cp+1I; < Dy, (27)
wherel, is computed from Eq24).

Itis possible to prove that Theorem 3 is superior, in termeuphber of schedulable task sets detected, to the correspnd
theorem in [6] based olISF, because of the superiority of tiRSF abstraction over thBISF.

We highlight that the bound oW/, expressed by Equation (23) can be refined using an iteratbod described in [5].
However we do not report the details here, due to space tionis

11

5 Related works

The virtualization of a resource is the process of providingew that is independent of the physical implementation of
the resource itself. One notable example of virtualizatibocomputing devices is certainly the Java Virtual Machih#][
that provides an abstraction of the machine through a maéhdependent instruction set. This allows the portabilftpode
from processor to processor without the need of re-conmgpdimthe new architecture.

In real-time systems, the interface of a virtual platfornsatées the amount of computing resource that is provided.
The virtualization of computing resource was extensivelglid to uniprocessors in the past. Mercer et al. [14] psepo
a resource reservation mechanism based on a required amdgeriod to provide an abstraction of a uniprocessor with
reduced speed. Abeni and Buttazzo [1] proposed the CorBtanaiwidth Server (CBS) to isolate an application requigng
varying amount of computation on a virtual processor withueed speed.

Mok, Feng, and Chen [15] introduced the concept of “supphgcfion” of a static time partition to measure the minimum
amount of computing resource provided. This paper set thieafdater research. Almeida and Pedreiras [2] appliedlaimi
techniques to schedule messages over the FTT-CAN netwdpkriland Bini [13] derived the set of supply functions that
can feasibly schedule a given application. Shin and Leeifitidduced the periodic resource model (that is a specaiscl
of supply functions) also deriving a utilization bound glaextended by Easwaran et al. [9] to account for a serveridead
possibly different than the period.

Very recently, there has been an increasing interest inqsiog interfaces for the computing power available on a mul-
tiprocessor. Leontyev and Anderson [12] proposed to atistine amount of resource provided by a virtual multiprooess
using one single parameter: the bandwidthThe authors propose to allocate a bandwidth requirementafto | w| dedi-
cated processors, plus an amounwof |w | provided by a periodic server globally scheduled onto tieaieing processors.
An upper bound of the tardiness of tasks scheduled on suetfane was provided.

Shin et al. [16] proposed a multiprocessor periodic resmunodel to describe the computational power supplied by a
parallel machine. They modeled a virtual multiprocessoth®y triplet (II, ©, m’), meaning that an overall budgéx is
provided bym’ processors every peridd. The big advantage of this interface is that it is simple aaptares the most
significant features of the platform. Nonetheless, the eggfion of all the computing resource by a unique nuntbkrads
to a more pessimistic analysis.

Chang et al. [7] proposed to partition the resource avaglibim a multiprocessor by a static periodic scheme. The aimou
of resource is then provided to the application through dreehspecification.

Bini et al. [6] proposed to abstract any parallel machine ¢goaiating a supply function [9,13,15,17] to each seqaknti
server, suggesting the Multi-Supply-FunctidgF) interface.

Definition 8 (Def. 1in [6]) A Multi Supply FunctionNISF) of a setll = {r;}"", of VPs is a set ofn. supply functions
{Z;}"2,, one for each VRr;, respectively.

However, when tasks are allowed migrating from one virtwatpssor to another, this model can be too pessimistic kecau
all the supply functions are derived assuming the worsgé-casdition for each virtual processor in isolation. We stibis
pessimism by the example of Figure 1, where the virtual ptaifprovides time according to two static partitions: oreg th
provides 2 time units every 4, and another one that providasedy 8. Following the approach suggested by Bini et al. [6]
this platform should be modeled by two supply functiéhsand Z, each one associated to each of the two servers. Figure 6
reports the two supply functions.

Figure 6. Example of two static partitions.

12

Suppose we have to schedule an aperiodic job that has ankeBdH 6 from its arrival and a computation time 6f = 4.
If we abstract the platform by the two supply functidis;, Z-}, the job is not schedulable because none of the two supply
functions can provide 4 time units in a 6 units interval. Iotf&; (6) = Z2(6) = 2 < 4. However, from Figure 1, it is clear
that in any interval of length 6 there are always 4 time units/juled by one processor. Note that R8F abstraction can
capture this notion. In fact, the definition ®f can take advantage of the time available on both processeesHigure 4),
so that in any interval of lengtP, there are at leadf; (D) = Y7(6) = 4 time units provided by at most one processor. The
schedulability of the aperiodic job is therefore assured.

6 Conclusions

In order to be able to build open environments — environmiratisprovide support for multiple independently-develbpe
applications — upon multiprocessor platforms, it is neagsghat appropriate abstractions be devised for reprieggtite
computing capabilities gbarts of the underlying multiprocessor platform. If these opewiemments are to be capable of
hosting safety-critical applications, such abstractionst be strictly enforceable (in the sense that they coore$fo strict
guarantees of computing capability), and they must be fbemaugh and expressive enough that it is possible to foymall
establish the correctness (in particular, the timeliness}al-time applications implemented upon these absbrat

Over the past few years, a series of such abstractions, @dsing generality and expressiveness, have been proposed
The major insight that the community seems to have gatherpdrforming this work is that the critical information whic
needs to be represented in the abstraction is the degreeadkefiam in the provided computing capability. According
these abstractions have aimed to maximize the amount of isflmmation that is communicated. The Parallel Supply
Function PSF) abstraction proposed in this paper continues this trenel hs#e shown that thHeSF abstraction is strictly
more powerful than the prior ones — from [6, 16] — that supgortilar interfaces, in the sense that it preserves moreeof th
parallelism information. To demonstrate the usabilityto$ tabstraction for building provably-correct real-tinystems, we
have derived sufficient schedulability tests that are abtietermine whether a given sporadic task systems is scitddudy
EDF upon the computing capabilities guaranteed by such sineedtion.

References

[1] Luca Abeni and Giorgio Buttazzo. Integrating multimadipplications in hard real-time systemsPioceedings of the
19™ |IEEE Real-Time Systems Symposipayes 4-13, Madrid, Spain, December 1998.

[2] Luis Almeida, Paulo Pedreiras, and José Alberto Gseorn. The FTT-CAN protocol: Why and holl2EE Transaction
on Industrial Electronics49(6):1189-1201, December 2002.

[3] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetfigg&camela, and Sebastian Stiller. Implementation of adsgee
optimal global EDF schedulability test. Proceedings of the EuroMicro Conference on Real-Time 8ystublin,
July 2008. IEEE Computer Society Press.

[4] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier.eBmptively scheduling hard-real-time sporadic tasks on
one processor. IRroceedings of the1™ IEEE Real-Time Systems Symposipages 182-190, Lake Buena Vista (FL),
U.S.A., December 1990.

[5] Marko Bertogna, Michele Cirinei, and Giuseppe Liparich&dulability analysis of global scheduling algorithms on
multiprocessor platformdEEE Transactions on Parallel and Distributed Syste@G08.

[6] Enrico Bini, Giorgio C. Buttazzo, and Marko Bertogna. elimulty supply function abstraction for multiprocessors. |
Proceedings of thé5™ IEEE International Conference on Embedded and Real-Tinmaping Systems and Applica-
tions pages 294-302, Beijing, China, August 2009.

[7] Yang Chang, Robert Davis, and Andy Wellings. Schedlilgtdnalysis for a real-time multiprocessor system based
on service contracts and resource partitioning. TechriRegdort YCS 432, University of York, 2008. available at
http://ww. cs.york.ac. uk/ftpdir/reports/ 2008/ YCS/ 432/ YCS- 2008- 432. pdf.

[8] Zhong Deng and Jane win-shih Liu. Scheduling real-tipglizations in Open environment. Rroceedings of thes™"
IEEE Real-Time Systems Symposipages 308-319, San Francisco, CA, U.S.A., December 1997.

13

[9] Arvind Easwaran, Madhukar Anand, and Insup Lee. Contmosil analysis framework using EDP resource models.
In Proceedings of thes™ IEEE International Real-Time Systems Sympospages 129-138, Tucson, AZ, USA, 2007.

[10] Michael FeketeUber die verteilung der wurzeln bei gewissen algebraisgieinohungen mit ganzzahligen koeffizien-
ten. Mathematische Zeitschrjfl 7:228-249, 1923.

[11] James Gosling and Henry McGilton. The java languagérenment: A white paper. Technical report, Sun Microsys-
tems, 1996. available &t t p: / / j ava. sun. conf docs/ whi t e/ | angenv/ .

[12] Hennadiy Leontyev and James H. Anderson. A hierart¢hicatiprocessor bandwidth reservation scheme with timing
guarantees. liProceedings of the0™ Euromicro Conference on Real-Time Systepagies 191-200, Prague, Czech
Republic, July 2008.

[13] Giuseppe Lipari and Enrico Bini. Resource partitian@mong real-time applications. Proceedings of the5"
Euromicro Conference on Real-Time Systgmages 151-158, Porto, Portugal, July 2003.

[14] Clifford W. Mercer, Stefan Savage, and Hydeyuki Toku®aocessor capacity reserves: Operating system support fo
multimedia applications. IProceedings of IEEE International Conference on Multirme@bomputing and Systems
pages 90-99, Boston, MA, U.S.A., May 1994.

[15] Aloysius K. Mok, Xiang Feng, and Deji Chen. Resourcetitian for real-time systems. IRroceedings of the" IEEE
Real-Time Technology and Applications Sympospages 75-84, Taipei, Taiwan, May 2001.

[16] Insik Shin, Arvind Easwaran, and Insup Lee. Hierarehgcheduling framework for virtual clustering multipresers.
In Proceedings of the0™ Euromicro Conference on Real-Time Systapagjes 181-190, Prague, Czech Republic, July
2008.

[17] Insik Shin and Insup Lee. Periodic resource model fangositional real-time guarantees. Pmoceedings of the4!"
Real-Time Systems Symposipages 2—13, Cancun, Mexico, December 2003.

14

