
The Parallel Supply Function Abstraction for a Virtual Mult iprocessor

Enrico Bini , Marko Bertogna
Scuola Superiore Sant’Anna

Pisa, Italy

Sanjoy Baruah
The University of North Carolina

Chapel Hill, NC, USA

Abstract

A new abstraction — the Parallel Supply Function (PSF) — is proposed for representing the computing capabilities
offered by virtual platforms implemented atop identical multiprocessors. It is shown that this abstraction is strictly more
powerful than previously-proposed ones, from the perspective of more accurately representing the inherent parallelism of
the provided computing capabilities. Sufficient tests are derived for determining whether a given real-time task system,
represented as a collection of sporadic tasks, is guaranteed to always meet all deadlines when scheduled upon a specified
virtual platform using the global EDF scheduling algorithm.

1 Introduction

There has been an increasing trend in embedded real-time systems design and implementation towardsopenenviron-
ments [8], in which multiple independently-developed applications can be implemented upon a single shared platform. The
typical approach towards providing scheduling support in such open environments is through the use of a two-level sched-
uler: the top level scheduler allocates resources to the various co-implemented applications, and each application’slocal
scheduler then schedules the jobs comprising the application during the time allocated by the top-level scheduler. Over the
past decade or so, sophisticated frameworks and architectures have been proposed for implementing such open environments
upon preemptive uniprocessor platforms.

Along with this trend towards open environments, there is anincreasing move towards implementing embedded real-time
systems uponmultiprocessor(and multicore) platforms. The use of such parallel architectures yields many benefits — great
increases in computing capabilities at lower cost; greaterenergy efficiency; etc. However, these multiprocessor platforms
present a programming model that is far more complex than those used in the classical uniprocessor context. In order to make
it easier to build open environments which can offer supportfor provably correct applications upon multiprocessor platforms,
it is desirable to designabstractionsthat conceal much of this additional complexity from the application designers and
implementers, instead providing them withinterfacesthat are easy to use and to formally reason about. That is, theresources
allocated by the top-level scheduler should be succinctly abstracted out into, and described by means of, an interface;each
local scheduler would, in effect, be designed to execute upon a “virtual platform” that behaves as described in this interface.
(Such an approach has the added benefit of de-linking application implementation from the platform upon which it will
reside, and of allowing for an easier migration of applications among platforms: as hardware is upgraded to a more powerful
platform, it is sufficient to ensure that the virtual processor provided by the global scheduler on the new hardware is compliant
with the interface previously established.) This paper reports on our recent research towards designing such an abstraction
and interface, under the assumptions that (i) the underlying multiprocessor platform is fully preemptive and supportsglobal
scheduling; (ii) the top-level scheduler provides each application with zero or more identical (and hence indistinguishable)
processors at each instant in time; and (iii) each individual application can be modeled as a collection of sporadic tasks (see
Section 2).

In proposing an abstraction, there is typically a tension between the degree of detail that is abstracted away, and the loss
of accuracy that results from such information-hiding. Thechallenge is to come up with the appropriate abstraction that
hides enough information so that it is relatively easy to build provably correct applications upon the resources provided by
the interface, while minimizing the resulting loss of accuracy. For open systems implemented on uniprocessor platforms,

1



the parameters in the proposed interfaces that appear to have been most effective have been indicators of (i) the long-term
averagecomputing capacitythat is offered; and (ii) thetime granularityat which this computing capacity is made available.
Specific examples of such interface implementations include the various budget-period servers (e.g, [14]), and the virtual
processor abstractions (e.g., [13,15]) — additional examples are listed in Section 5.

Upon multiprocessors, Shin et al. [16] proposed an extension of the budget-period abstraction to multiprocessor platforms,
by adding a third parameter — themaximum degree of parallelism— to the interface specification. This is a wonderful idea
since it explicitly recognizes the critical role of the degree of parallelism in multiprocessor schedulability: informally and
intuitively speaking, the lesser the degree of parallelismin the provided budget, the better guaranteed use the local scheduler
can make of it. However, we feel that [16] did not go far enoughin exposing underlying parallelism — by representing
all parallelism-related information by a single parameter, they, in our opinion, erred too much in favor of simplicity by
abstracting away too much information at a cost of a considerable loss of accuracy. Bini et al. [6] proposed to remedy this
shortcoming by representing the interface built upon an underlyingm-processor platform with (the supply functions of)m
distinct virtual processors; by using the knowledge of these virtual processors’ supply functions, it is possible to deduce
additional information bounding the degree of parallelismin the budget supplied via the interface.

Our contributions In this paper, we propose theParallel Supply Function(PSF) abstraction and associated interface for
use upon multiprocessor platforms. We show (in Section 5) that this is a superior abstraction to the one in [6], in the sense that
even more information can be deduced regarding the degree ofparallelism in the budget represented by aPSF while not being
any more complex to represent or reason with than the abstraction proposed in [6]. We present, and prove the correctness of,
sufficient schedulability tests for determining whether a given application, represented as a collection of sporadic tasks, can
be scheduled upon a specified interface when the local scheduling algorithm used is Earliest Deadline First (EDF).

2 Terminology and notation

In this section we describe the formal models we use to represent both the virtual multiprocessor platforms and the
applications.

2.1 Modelling virtual platforms

Each individual application is scheduled onto a dedicated virtual platformΠ, which may provide computing capacity upon
multiple processors in parallel. Our formalisms do not set any constraints on the techniques used by the virtual platform Π
to provide execution cycles to the applicationΓ — the platformΠ could, for instance, be implemented by many sequential
servers, static partitions of the processors over time, Pfair or other global schedulers, etc. We will take a closer lookat virtual
multiprocessor platforms in Section 3.

Figure 1 illustrates a virtual platform that supplies time according to two static partitions: one that provides 2 time units
every 4, and another one that provides 4 every 8. In Section 3 we will use this example partition to illustrate some of the
definitions.

0 2 4 6 8

...

...π1

π2

Figure 1. Example of a periodic static partition.

2.2 Modeling applications

We model an application as a set ofn sporadic tasksτ = {τi}
n
i=1. Each taskτi = (Ci, Ti, Di) is characterized by a

worst-case computation timeCi, a minimum inter-arrival timeTi (also referred to as period), and a relative deadlineDi.
Each taskτi releases a sequence of jobsτi,k, where each job is characterized by an arrival timeri,k, an absolute deadline
di,k, a computation timeci,k. We have thatci,k ≤ Ci, ri,k ≥ ri,k−1 + Ti, anddi,k = ri,k + Di. In this paper, we assume a

2



-
t

6

Ci

2Ci

3Ci

Ti 2Ti 3TiDi Ti+Di 2Ti+Di

���
���

���

Ci

σ

Ci

σ

Ci

σ

-

-

-

�

�

�

Figure 2. Illustrating FF-DBF(τi, t, σ).

constrained deadlinemodel, whereDi ≤ Ti for all i. We also setDmin = mini Di. Time is continuous and time variables
are represented by real numbers.

The forced-forward demand bound function Let τi denote a sporadic task,t any positive real number, andσ any positive
real number≤ 1. Theforced forward demand bound functionFF-DBF(τi, t, σ) is defined as follows:

FF-DBF(τi, t, σ)
def
= qiCi +







Ci if ri ≥ Di

Ci − (Di − ri)σ if Di > ri ≥ Di −
Ci

σ

0 otherwise
(1)

where

qi
def
=

⌊

t

Ti

⌋

and ri
def
= t mod Ti ,

Informally speaking,FF-DBF(τi, t, σ) can be thought of as a bound on the demand ofτi for interval-lengtht, when
executionoutsidethe interval occurs on a speed-σ processor. This function is illustrated for an example taskin Figure 2.

The FF-DBF concept is easily extended from individual tasks to applications that are modeled as collections of sporadic
tasks: for any such applicationτ

FF-DBF(τ, t, σ)
def
=

∑

τℓ∈τ

FF-DBF(τℓ, t, σ)

It is evident from the definition ofFF-DBF (Equation (1)) thatFF-DBF(τ, s, t) can be computed very efficiently, in polyno-
mial time — see, e.g., [3] for further details.

Some additional notation that we will use. Letτ denote an application that is modeled as a collection of sporadic tasks,
andτk any task inτ :

densityδk
def
= Ck/Dk

utilizationUk
def
= Ck/Tk

maximum densityδ
def
= max

τi∈τ
δi

total utilizationU
def
=

∑

τi∈τ

Ui

Finally, we will use(x)0 as a short formax(x, 0).

3 The parallel supply function abstraction

The need of developing the applications independently of the underlying hardware strongly motivates the investigation
of interfaces for multiprocessor platforms. As stated above, however, it is important that the interfaces used retain,as much
as possible, information regarding the degree of parallelism in which execution capacity (the “budget”) is supplied bythe
interface. In [16], such information was communicated via the maximum parallelismparameter. (The example virtual
platform of Figure 1 is thus represented in the Shin et at. model [16] by a budget of 8, a period of 8, and a maximum
parallelism of 2. Hence, this formalism abstracts away the potentially useful information that only 4 of the 8 units of the
budget occurs upon parallel processors, and that some processor is available for 6 units of time out of every 8.) In [6],

3



more parallelism information could be communicated via an interface called theMulti Supply Function(MSF). TheMSF is
described in detail in Section 5, where it is shown that even theMSF interface has some shortcomings with regard to retaining
parallelism information.

To overcome the limitations of theMSF, we start by generalizing the concept of time partition to the multiprocessor case.
Recall from [15] that this concept was introduced to formally represent the availability of a processor that is not necessarily
continually available; atime partitionrepresents the availability of such a processor by a collection of time-intervals, denoting
the times when the processor is available. Since there are multiple processors in a multiprocessor platform, the extension of
time partitions to multiprocessors must be able to represent the aggregation of the time partitions of all the processors.

Definition 1 A time multi-partitionP is a countable multiset1 of intervals, formally

P
def
= {[ai, bi)}i∈N.

Intuitively, P is the aggregation (the “multi-union”) over all the processors in the platform, of the time partitions of each
processor. Without loss of generality we set the instant when the virtual platform is created equal to0. Hence we have
ai ≥ 0, ∀i ∈ N.

A time multi-partition represents the instants over time when the virtual platform allocates time to the application. For
example, the multi-partition of Figure 1 is

P = {[4k, 2 + 4k), [8k, 4 + 8k)}k∈N. (2)

For a given multi-partition, our objective is to define a suitable abstraction that represents the execution capacity supplied
by this multi-partition, while retaining information about the degree of parallelism present in this supply. We start by defining
the characteristic functionγA of any subsetA ⊆ R

γA(t)
def
=

{

1 t ∈ A

0 t /∈ A
, (3)

and the characteristic function of a multi-partition

γP(t)
def
=

∑

[ai,bi)∈P

γ[ai,bi)(t). (4)

The characteristic function of the multi-partitionP of Figure 1 is depicted in Figure 3.

0 2 4 6 8

2

1

γP(t)

t

Figure 3. Example of characteristic function γP .

For a given multi-partitionP , it is useful to define the maximum degree of parallelism as follows.

Definition 2 Given a multi-partitionP , we define the maximum degree of parallelism as

M(P)
def
= max

t≥0
γP(t) (5)

For the multi-partition depicted in Figure 1, the maximum degree of parallelism is equal to two.
Definition 1 provides a formal notation for the exact representation of virtual multiprocessors that are not continually

available. However, it is often not desirable in practice torepresent such virtual multiprocessor in an exact manner, for

1In set theory, amultisetis a generalization of a set, in which individual elements may occur multiple times. Each such occurrence counts as a separate
element of the multiset.

4



several reasons. First, too much information is not always useful and can render programming and analysis cumbersome
— indeed, concealing some detail is the very idea behind abstraction and information-hiding. More critically, it is possible
that all the knowledge is simply not available at design and specification time; more typically, the exact availability of the
virtual processors depends on run-time events such as contention with other virtual multiprocessors that are sharing the same
physical platform, and hence only becomes known during run-time. The best we can do during specification and design
time is specify bounds on the supplied computing capacity. Such bounds are conveniently modeled by characteristicsupply
functions, as follows.

Definition 3 Given a multi-partitionP , we define thelevel-j supply functionYj,P(t) as the minimum amount of time pro-
vided by the multi-partition in every interval of time of length t ≥ 0 by at mostj intervals in parallel. That is

Yj,P (t)
def
= min

t0≥0

∫ t0+t

t0

min{j, γP(x)} dx. (6)

We believe that this definition captures properly the amountof resource provided by a multi-partition, by investigating the
number of processors that supply the resource simultaneously.

Below we provide some simple properties of the level-j supply functionsYj,P . Notice that when comparing any two
functionsf, g : R→ R, when we writef ≤ g we mean∀t f(t) ≤ g(t).

Lemma 1 For any multi-partitionP , we have

Y0,P = 0, (7)

∀j ≥ 0, Yj+1,P ≥ Yj,P , (8)

∀j ≥ M(P), Yj,P = Yj+1,P , (9)

∀j ≥ 1, Yj,P − Yj−1,P ≥ Yj+1,P − Yj,P . (10)

∀j ≥ 0, ∀s, t ≥ 0, Yj,P(s + t) ≥ Yj,P(s) + Yj,P(t) (11)

Proof All the properties follow from Definition 3.
Whenj = 0, the minimum of Eq. (6) is constantly zero, becauseγP ≥ 0. HenceY0,P = 0 for anyP , proving Eq. (7).
For any integerk, we havemin{j + 1, k} ≥ min{j, k} that proves Eq. (8).
Proof of Eq. (9).

∀t ≥ 0, j ≥ M(P) ≥ γP(t) ⇒ min{j, γP(t)} = γP(t),

Hence, whenj ≥ M(P), we have

∀t ≥ 0, Yj,P(t) = Yj+1,P (t) = min
t0≥0

∫

[t0,t0+t]

γP(x) dx.

Proof of Eq. (10). Equation (10) is equivalent to

∀j ≥ 1, 2Yj,P ≥ Yj+1,P + Yj−1,P .

We prove it by showing that

∀k ∈ N, 2 min{j, k} ≥ min{j + 1, k}+ min{j − 1, k}.

In fact, whenk ≥ j + 1, then

2 min{j, k} = 2j

min{j + 1, k}+ min{j − 1, k} = j + 1 + j − 1 = 2j;

whenk ≤ j − 1,

2 min{j, k} = 2k

min{j + 1, k}+ min{j − 1, k} = 2k;

5



finally, whenk = j,

2 min{j, k} = 2j

min{j + 1, k}+ min{j − 1, k} = j + j − 1 = 2j − 1,

which proves the desired property.
We conclude by proving thatYj,P is superadditive(Equation (11)). For any functionf : R→ R, we have

min
t0

∫ t0+s+t

t0

f(x)dx = min
t0

(∫ t0+s

t0

f(x)dx +

∫ t0+s+t

t0+s

f(x)dx

)

≥ min
t0

∫ t0+s

t0

f(x)dx + min
t0

∫ t0+t

t0

f(x)dx

from which it follows Eq. (11), whenf(x) = min{j, γP(x)}. 2

Definition 3 requires the knowledge of the exact time multi-partitionP corresponding to the virtual multiprocessor plat-
form under discussion. As discussed above (prior to Definition 3), such information is often known only at run-time (and not
at design time) since the actual allocation typically depends on events (such as contention with other VPs) that cannot always
be predicted during design time. In the following, we extendDefinition 3 by removing the need for such a knowledge.

Definition 4 Given a virtual multiprocessor platformΠ, we definelegal(Π) as the set of multi-partitionsP that can be
allocated byΠ.

The maximum degree of parallelism, and the level-j supply functions, of a virtual multiprocessor platform aredefined
generalizing the analogous concepts for individual multi-partitions.

Definition 5 Given a virtual platformΠ, we define its maximum degree of parallelism as

m
def
= max

P∈legal(Π)
M(P) (12)

Definition 6 Given a virtual platformΠ, its level-j supply functionYj(t) is the minimum amount of time provided,with
parallelism at mostj, by the serverΠ in every time interval of lengtht ≥ 0,

Yj(t)
def
= min

P∈legal(Π)
Yj,P(t). (13)

Notice that the properties of Lemma 1 hold also for theYj level-j supply functions, because they hold for theYj,P functions,
for any multi-partitionP .

We are now ready to define the Parallel Supply Function (PSF) of any virtual platformΠ.

Definition 7 We define the Parallel Supply Function (PSF) interface of the virtual platformΠ as the set{Yj(t)}
m
j=1 of the

level-j supply functions.

The introduction of thePSF allows a more precise characterization of the time suppliedby a virtual platform. We illustrate
this on the simple example of Figure 1. In the virtual platform Π corresponding to this figure, the time is allocated statically
to the two servers, hencelegal(Π) is composed of one single multi-partitionP (the one given by Eq. (2)). For this multi-
partitionP , the corresponding characteristic functionγP is depicted in Figure 3. If we compute the level-1 and level-2 supply
functions from Definition 3, we can find the two functionsY1(t) andY2(t) reported in Figure 4.

Similarly to what is done for single processor hierarchicalscheduling [13, 15, 17], we find it useful to lower bound the
parallel supply functionsYj(t) with a linear functionαj(t−∆j)0. SinceYj is superadditive (Equation (11)), a result attributed
to Fekete [10] ensures that the following limit exists:

αj
def
= lim

t→+∞

Yj(t)

t
= sup

t

Yj(t)

t
(14)

Notice also thatαj ≤ j, from Eq. (6). Hence, by defining

∆j
def
= sup

t

{

t−
Yj(t)

αj

}

(15)

6



2 4 6 8

2

4

6

Y1(t)

Y2(t)

Figure 4. The level- j supply functions Y1(t) and Y2(t) for the example of Figure 1.

the level-j parallel supply function can be conveniently lower boundedby

Yj(t) ≥ αj(t−∆j)0. (16)

ThePSF is anabstractionof the computing capabilities of the virtual platform, rather than its exact representation. One
of the consequences of this fact is that none of the multi-partitions that could be generated by a particular virtual platform Π
may correspond exactly to the characterization ofΠ by its Yj(t) functions. We can nevertheless assert lower bounds on the
durations for which individual processors must be made available over any time interval in any multi-partition that could be
generated byΠ, as follows.

Let us arbitrarily assign a total ordering to the processorsin the physical platform upon whichΠ is implemented, so that it
makes sense to talk of thej’th processorPj , 1 ≤ j ≤ m. Consider an arbitrary multi-partitionP of Π, and some interval of
lengthL; at any instant in this interval at whichP makes fewer thanm processors available, we willrename2 the processors
in order to choose which of them processorsP1, . . . , Pm are available, in the following manner:

• by definition,Π makes≥ Y1(L) units of non-parallel execution available over the interval. Let us “assign” exactly
Y1(L) of this execution to the first processorP1, in the sense that we will name the processor(s) on which thisexecution
has occurred forY1(L) time units asP1;

• similarly, Π makes at leastY2(L) units of execution with parallelism at most two available over the interval. Let us
again assign(Y2(L)− Y1(L)) of this execution to the second processorP2;

• in a similar vein, we can assign exactly(Yj(L) − Yj−1(L)) units of execution to thej’th processorPj , for eachj,
1 ≤ j ≤ m;

• observe that since theYj(L)’s denotelower boundson the amount of computing capacity that must be available in
the partition, the actual availability of execution capacity in P may exceed the amount assigned in the steps above.
Once all these assignments have been done, therefore, the remaining execution can be arbitrarily assigned among the
processors (over time durations when they have not already been assigned execution during the above steps).

As a consequence of the above argument, it follows that

Lemma 2 Let Π be a virtual platform characterized by the supply functions{Yj(t)}
m
j=1. For any multi-partitionP in

legal(Π) and any interval of lengthL, there exists a dynamic renaming of the processors over the interval such that thej’th
processor is available for at least

(

Yj(L)− Yj−1(L)
)

time units over this interval inP .

2We point out that we are not actually requiring that the virtual platform be implemented to make allocations in a manner that corresponds to our renam-
ing — this is a mere notational convenience. Since we are restricting our attention here to virtual platforms implemented upon identical multiprocessors, we
can always rename processors for the purposes of reasoning about the schedule, without loss of generality.

7



for i← 2, 3, . . . do
let Ji denote a job that

– arrives at some time-instantti < ti−1;
– has a deadline afterti−1;
– has not completed execution byti−1; and
– has executed for strictly less than(ti−1 − ti) δ

units over the interval[ti, ti−1).
if there is no such jobthen

k ← (i− 1)
break (out of the for loop)

end if
end for

Figure 5. Proof of Theorem 1: defining the Ji’s, the ti’s and k.

4 Schedulability analysis

In this section, we derive two sufficient tests for determining whether a given application, modeled as a collection of
sporadic tasks, can be scheduled to meet all deadlines when scheduled upon a virtual platformΠ using global EDF as the
local scheduling algorithm. The first method borrows the idea of forced forward demand bound function [3] and allows
deriving a schedulability condition with pseudopolynomial complexity. The second test, inspired by Bertogna et al. [5] has
polynomial complexity. It derives an upper bound on the interfering workload generated over the scheduling window of each
task, and checks whether it is sufficient to cause a deadline miss. Since none of them is proved to dominate the other, both
can be used for admission control.

The tests consider an applicationτ composed ofn sporadic tasksτ1, . . . , τn. The virtual multiprocessor platform, de-
notedΠ, has its maximum parallelismm, and is characterized by its parallel supply function (PSF) abstraction, denoted
{Yj(t)}

m
j=1.

4.1 FF-DBF based schedulability test

In this section, we present a sufficient schedulability condition based on the concept ofFF-DBF, as defined in Section 2.2.

Theorem 1 Any constrained-deadline sporadic task systemτ satisfying

∀L ≥ Dmin, FF-DBF(τ, L, δ) ≤ max
k
{Yk(L)− (k − 1)δL} (17)

is guaranteed to be EDF-schedulable uponΠ.

Proof Let us suppose that sporadic task systemτ is not EDF-schedulable onΠ, and let us consider a minimal sequence of
jobs of τ upon which EDF misses deadlines when implemented onΠ. Let to denote the (first) instant at which a deadline
miss occurs in such an EDF schedule. LetJ1 denote a job that misses its deadline atto, and lett1 denoteJ1’s arrival-time.
(Observe that(to − t1) ≥ Dmin.)

We define a sequence of jobsJi, time-instantsti, and an indexk, according to the pseudo-code in Figure 5.
Let L denote the length of the interval[tk, to): L

def
= (t0 − tk). For eachi, 1 ≤ i ≤ k, let Wi denote the total amount of

execution that occurs over the interval[ti, ti−1).

Lemma 1.1 FF-DBF(τ, L, δ) ≥
∑k

i=1 Wi.

Proof All jobs that execute in[tk, to) (and hence contribute to
∑k

i=1 Wi) have their deadlines within the interval[tk, to).
Some of them will also have arrived within this interval, while others may not.

8



Now it may be verified that the amount of execution that jobs ofany taskτℓ contribute to
∑k

i=1 Wi is bounded from above
by the scenario in which a job ofτℓ has its deadline coincident with the end of the interval, andprior jobs have arrived exactly
Tℓ time-units apart. Under this scenario, the jobs ofτℓ that may contribute to

∑k

i=1 Wi include

• at leastqℓ
def
= ⌊L/Tℓ⌋ jobs ofτℓ that lie entirely within the interval[tk, to); and

• (perhaps) an additional job that has its deadline at time-instanttk + rℓ, whererℓ
def
= L mod Tℓ.

We now consider two separate cases:

1. rℓ ≥ Dℓ; i.e., the additional job with deadline attk + rℓ arrives at or aftertk. In this case, its contribution isCℓ.

2. rℓ < Dℓ; i.e., the additional job with deadline attk + rℓ arrives prior totk. From the exit condition of the for-loop, it
must be the case that this job has completed at leastδ(Dℓ − rℓ) units of execution prior to time-instanttk; hence, its
remaining execution is at mostmax(0, Cℓ − δ(Dℓ − rℓ)).

In either case, it may be seen that the upper bound on the totalcontribution ofτℓ to
∑k

i=1 Wi is equal toFF-DBF(τℓ, L, δ)
(see Equation 1). The lemma follows, by summing over all tasks τℓ ∈ τ . 2

Lemma 1.2 Some execution occurs at all the time-instants in[tk, to) during which the virtual platformΠ makes one or more
processors available.

Proof Consider each interval[ti, ti−1). By definition ofji, it arrives atti and has not completed execution byti−1; hence,
EDF will execute it whenever processors are available. Thisrules out the existence of a time-instant over[ti, ti−1) during
which some processor is available, but no job — not evenji — is executing. The lemma follows by summing over alli,
1 ≤ i ≤ k, 2

Lemma 1.3 The total duration of all time-intervals over[tk, to) during which processors are made available by the virtual
platformΠ, but are not being used in the EDF schedule, is strictly less thanδ L.

Proof For eachi, 1 ≤ i ≤ k, letxi denote the total length of the time-intervals over[ti, ti−1) during which jobJi executes.
Since jobJi, by its definition, arrives atti and has not completed execution byti−1, all the processors thatΠ makes available
over this interval must be executing some job wheneverJi is not. Furthermore,Ji is chosen such thatxi < δ(ti−1 − ti);
hence, the total duration of all the time-intervals over[ti, ti−1) during which processors are made available by the virtual
platformΠ, but are not being used in the EDF schedule, is strictly less thanδ(ti−1 − ti). The lemma follows by summing
over alli, 1 ≤ i ≤ k, and using the fact thatL

def
=

∑k
i=1(ti − ti−1). 2

Recall from Lemma 2 that thej’th processor is allocated in any multi-partition ofΠ for at least(Yj(L)− Yj−1(L)) time
units over the interval[tk, to). As a consequence of this fact and Lemma 1.3, thej’th processor therefore completes at least

max
(

0,
(

(Yj(L)− Yj−1(L))− δL
)

)

units of execution over[tk, to), for eachj > 1; while, by Lemma 1.2, the first processor completes at leastY1(L) units of
execution. By Lemma 1.1, we therefore have

FF-DBF(τ, L, δ)

> Y1(L) +

m
∑

j=2

max
(

0,
(

(Yj(L)− Yj−1(L))− δL
)

)

= Y1(L) +
m

∑

j=2

(

(Yj(L)− Yj−1(L))−

min
(

(Yj(L)− Yj−1(L)), δL
)

)

= Ym(L)−

m
∑

j=2

min
(

(Yj(L)− Yj−1(L), δL
)

.

9



We have thus shown that in order forτ to not be EDF-schedule onΠ, it is necessary that

FF-DBF(τ, L, δ) > Ym(L)−

m
∑

j=2

min
(

Yj(L)− Yj−1(L)), δL
)

(18)

for someL ≥ Dmin.
The RHS can be further simplified. From Eq. (10) it follows that the valuesYj(L)− Yj−1(L) are decreasing withj. Let

k∗ be the greatest index in the summation where themin of the RHS is given byδL (when the minimum is always given by
Yj(L)− Yj−1(L), we setk∗ = 1). Then, the RHS becomes

Ym(L)−

m
∑

j=k∗+1

(

Yj(L)− Yj−1(L)
)

−

k∗

∑

j=2

δL =

Yk∗(L)− (k∗ − 1)δL.

Since for any other indexk 6= k∗,
Yk(L)− (k − 1)δL ≤ Y ∗

k (L)− (k∗ − 1)δL,

it follows
max

k

(

Yk(L)− (k − 1)δL
)

= Y ∗
k (L)− (k∗ − 1)δL.

Eq. (18) can then be rewritten as
FF-DBF(τ, L, δ) > max

k

(

Yk(L)− (k − 1)δL
)

(19)

for someL ≥ Dmin. Theorem 1 immediately follows, as the contrapositive of the above statement. 2

A schedulability test Theorem 1 suggests the following strategy for checking whether a given sporadic task system is not
EDF-schedulable on a specified virtual platformΠ: determine whether there is anyL ≥ Dmin satisfying Inequality (19). If
not, thenτ is guaranteed to be EDF-schedulable onΠ.

While Dmin represents a lower bound on the range of values ofL for which Inequality (17) must be tested, we do not
yet have an upper bound. Hence, while we could start Inequality (17) with L ← Dmin and repeatedly increase the value of
L being tested, it is not immediately evident when it would be safe to stop and conclude thatτ is in fact schedulable. To
determine an upper bound forL that allows stopping the check of Inequality (17), we extenda technique previously used in
uniprocessor [4] or multiprocessor [3] EDF schedulabilitytests.

A linear lower bound of each level-j parallel supply function is given by Eq. (16). It is evident from the definition of
FF-DBF (Definition 1; also see Figure 2) that(Ci + t Ui) is an upper bound onFF-DBF(τi, t, δ) for any t. Then, an upper
bound for the LHS of Inequality (19) is

FF-DBF(τ, L, δ) ≤ L U +
∑

τi∈τ

Ci. (20)

For the RHS of Inequality (19), an obvious lower bound is obtained applying Equation (16) for all values ofk, that is

max
k
{αk(L−∆k)0 − (k − 1)δL}. (21)

Substituting all these bounds into Inequality (19), we conclude that in order forτ to not be EDF-schedulable, it is necessary
that someL ≥ Dmin satisfies

∀k, L U +
∑

τi∈τ

Ci > αk(L−∆k)− (k − 1)δL

∀k, L <
αk∆k +

∑

τi∈τ Ci

αk − U − (k − 1)δ

L < min
k

αk∆k +
∑

τi∈τ Ci

αk − U − (k − 1)δ
. (22)

Hence if Inequality (19) is to be satisfied for any value ofL, it will be satisfied for someL no larger than the bound in
Equation (22) above. Equivalently, if we have verified that Inequality (19) evaluates to true for all values ofL up to the bound
in Equation (22), we can safely conclude that task systemτ is indeed schedulable on the virtual platformΠ when global EDF
is being used as the local scheduling algorithm.

10



4.2 Demand based schedulability test

The second schedulability condition we present is based on the concept of interfering workloadWk, defined as the sum of
the execution times of higher priority jobs interfering onτk. Bertogna et al. proposed the following bound [5]:

Wk≤W k =
n

∑

i=1
i6=k

⌊

Dk

Ti

⌋

Ci+min

{

Ci, Dk−

⌊

Dk

Ti

⌋

Ti

}

(23)

The interferenceIk denotes instead the total duration in[0, Dk) in whichτk is ready to execute but it cannot be scheduled
due to higher priority jobs or unavailable supply.

In [6], a method is presented to bound the interferenceIk as a function of the interfering workloadWk when the virtual
multiprocessor is abstracted through theMSF interface. The next theorem adapts this method to thePSF model adopted in
this paper.

Theorem 2 Consider a task setτ that is scheduled on a virtual platformΠ with maximum degree of parallelismm, that is
characterized by thePSF {Yj(t)}

m
j=1. Then, for each taskτk, the interferenceIk is upper bounded by

Ik≤ Ik = L0 +

m
∑

ℓ=1

min



Lℓ,

(

Wk −
∑ℓ−1

p=0 pLp

)

0

ℓ



 (24)

with {Lℓ}
m
ℓ=0 equal to

L0 = Dk − Y1(Dk)

Lℓ = 2Yℓ(Dk)− Yℓ−1(Dk)− Yℓ+1(Dk)

Lm = Ym(Dk)− Ym−1(Dk).

(25)

Proof In [6], a similar theorem is proved for the case in which the platform is specified by means of a set ofm individual
supply functions{Zj(Dk)}mj=1, whereZj(Dk) represents the minimum supply granted by thej-th virtual processor in any
interval of lengthDk. The only difference lies in the values{Lℓ}

m
ℓ=0, which were defined as

L0 = Dk − Z1(Dk)

Lℓ = Zℓ(Dk)− Zℓ+1(Dk)

Lm = Zm(Dk).

(26)

We need to adapt this result to the case in which the platform is specified with the parallel supply functions{Yj(t)}
m
j=1.

By Lemma 2, we know that for each platform represented by{Yj(t)}
m
j=1, we can dynamically rename the processors over

any interval of lengthDk, such that thej-th processor is available for at least
(

Yj(Dk) − Yj−1(Dk)
)

time units over this
interval. This means that the platform can be represented aswell by a set ofm individual supply functions{Zj(Dk)}mj=1,
such that

Zj(Dk) =
(

Yj(Dk)− Yj−1(Dk)
)

.

The theorem follows replacingZj(Dk) in Equation (26) with the above expression. Note that, by Lemma 1, eachLℓ is
non-negative, for allℓ. 2

The next theorem easily follows, considering that a necessary condition for a deadline miss is that a taskτk should be
interfered for more than its slackDk − Ck.

Theorem 3 A task setτ = {τi}
n
i=1 is schedulable with EDF on aPSF platform modeled by{Yj}

m
j=1, if

∀k = 1, . . . , n Ck + Ik ≤ Dk, (27)

whereIk is computed from Eq.(24).

It is possible to prove that Theorem 3 is superior, in terms ofnumber of schedulable task sets detected, to the corresponding
theorem in [6] based onMSF, because of the superiority of thePSF abstraction over theMSF.

We highlight that the bound onWk expressed by Equation (23) can be refined using an iterative method described in [5].
However we do not report the details here, due to space limitations.

11



5 Related works

The virtualization of a resource is the process of providinga view that is independent of the physical implementation of
the resource itself. One notable example of virtualizationof computing devices is certainly the Java Virtual Machine [11]
that provides an abstraction of the machine through a machine independent instruction set. This allows the portabilityof code
from processor to processor without the need of re-compiling on the new architecture.

In real-time systems, the interface of a virtual platform describes the amount of computing resource that is provided.
The virtualization of computing resource was extensively applied to uniprocessors in the past. Mercer et al. [14] proposed
a resource reservation mechanism based on a required budgetand period to provide an abstraction of a uniprocessor with
reduced speed. Abeni and Buttazzo [1] proposed the ConstantBandwidth Server (CBS) to isolate an application requiringa
varying amount of computation on a virtual processor with reduced speed.

Mok, Feng, and Chen [15] introduced the concept of “supply function” of a static time partition to measure the minimum
amount of computing resource provided. This paper set the root of later research. Almeida and Pedreiras [2] applied similar
techniques to schedule messages over the FTT-CAN network. Lipari and Bini [13] derived the set of supply functions that
can feasibly schedule a given application. Shin and Lee [17]introduced the periodic resource model (that is a special class
of supply functions) also deriving a utilization bound, later extended by Easwaran et al. [9] to account for a server deadline
possibly different than the period.

Very recently, there has been an increasing interest in proposing interfaces for the computing power available on a mul-
tiprocessor. Leontyev and Anderson [12] proposed to abstract the amount of resource provided by a virtual multiprocessor
using one single parameter: the bandwidthw. The authors propose to allocate a bandwidth requirement ofw onto⌊w⌋ dedi-
cated processors, plus an amount ofw−⌊w⌋ provided by a periodic server globally scheduled onto the remaining processors.
An upper bound of the tardiness of tasks scheduled on such interface was provided.

Shin et al. [16] proposed a multiprocessor periodic resource model to describe the computational power supplied by a
parallel machine. They modeled a virtual multiprocessor bythe triplet 〈Π, Θ, m′〉, meaning that an overall budgetΘ is
provided bym′ processors every periodΠ. The big advantage of this interface is that it is simple and captures the most
significant features of the platform. Nonetheless, the aggregation of all the computing resource by a unique numberΘ leads
to a more pessimistic analysis.

Chang et al. [7] proposed to partition the resource available from a multiprocessor by a static periodic scheme. The amount
of resource is then provided to the application through a contract specification.

Bini et al. [6] proposed to abstract any parallel machine by associating a supply function [9,13,15,17] to each sequential
server, suggesting the Multi-Supply-Function (MSF) interface.

Definition 8 (Def. 1 in [6]) A Multi Supply Function (MSF) of a setΠ = {πj}
m
j=1 of VPs is a set ofm supply functions

{Zj}
m
j=1, one for each VPπj , respectively.

However, when tasks are allowed migrating from one virtual processor to another, this model can be too pessimistic because
all the supply functions are derived assuming the worst-case condition for each virtual processor in isolation. We showthis
pessimism by the example of Figure 1, where the virtual platform provides time according to two static partitions: one that
provides 2 time units every 4, and another one that provides 4every 8. Following the approach suggested by Bini et al. [6]
this platform should be modeled by two supply functionsZ1 andZ2 each one associated to each of the two servers. Figure 6
reports the two supply functions.

2 4 6 8

2

4 ...

Z1(t)

Z2(t)

Figure 6. Example of two static partitions.

12



Suppose we have to schedule an aperiodic job that has a deadlineD = 6 from its arrival and a computation time ofC = 4.
If we abstract the platform by the two supply functions{Z1, Z2}, the job is not schedulable because none of the two supply
functions can provide 4 time units in a 6 units interval. In fact Z1(6) = Z2(6) = 2 < 4. However, from Figure 1, it is clear
that in any interval of length 6 there are always 4 time units provided by one processor. Note that thePSF abstraction can
capture this notion. In fact, the definition ofY1 can take advantage of the time available on both processors (see Figure 4),
so that in any interval of lengthD, there are at leastY1(D) = Y1(6) = 4 time units provided by at most one processor. The
schedulability of the aperiodic job is therefore assured.

6 Conclusions

In order to be able to build open environments — environmentsthat provide support for multiple independently-developed
applications — upon multiprocessor platforms, it is necessary that appropriate abstractions be devised for representing the
computing capabilities ofpartsof the underlying multiprocessor platform. If these open environments are to be capable of
hosting safety-critical applications, such abstractionsmust be strictly enforceable (in the sense that they correspond to strict
guarantees of computing capability), and they must be formal enough and expressive enough that it is possible to formally
establish the correctness (in particular, the timeliness)of real-time applications implemented upon these abstractions.

Over the past few years, a series of such abstractions, of increasing generality and expressiveness, have been proposed.
The major insight that the community seems to have gathered in performing this work is that the critical information which
needs to be represented in the abstraction is the degree of parallelism in the provided computing capability. Accordingly,
these abstractions have aimed to maximize the amount of suchinformation that is communicated. The Parallel Supply
Function (PSF) abstraction proposed in this paper continues this trend. We have shown that thePSF abstraction is strictly
more powerful than the prior ones — from [6,16] — that supportsimilar interfaces, in the sense that it preserves more of the
parallelism information. To demonstrate the usability of this abstraction for building provably-correct real-time systems, we
have derived sufficient schedulability tests that are able to determine whether a given sporadic task systems is schedulable by
EDF upon the computing capabilities guaranteed by such an abstraction.

References

[1] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time systems. InProceedings of the
19th IEEE Real-Time Systems Symposium, pages 4–13, Madrid, Spain, December 1998.

[2] Luı́s Almeida, Paulo Pedreiras, and José Alberto G. Fonseca. The FTT-CAN protocol: Why and how.IEEE Transaction
on Industrial Electronics, 49(6):1189–1201, December 2002.

[3] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Sebastian Stiller. Implementation of a speedup-
optimal global EDF schedulability test. InProceedings of the EuroMicro Conference on Real-Time Systems, Dublin,
July 2008. IEEE Computer Society Press.

[4] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively scheduling hard-real-time sporadic tasks on
one processor. InProceedings of the11th IEEE Real-Time Systems Symposium, pages 182–190, Lake Buena Vista (FL),
U.S.A., December 1990.

[5] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability analysis of global scheduling algorithms on
multiprocessor platforms.IEEE Transactions on Parallel and Distributed Systems, 2008.

[6] Enrico Bini, Giorgio C. Buttazzo, and Marko Bertogna. The multy supply function abstraction for multiprocessors. In
Proceedings of the15th IEEE International Conference on Embedded and Real-Time Computing Systems and Applica-
tions, pages 294–302, Beijing, China, August 2009.

[7] Yang Chang, Robert Davis, and Andy Wellings. Schedulability analysis for a real-time multiprocessor system based
on service contracts and resource partitioning. TechnicalReport YCS 432, University of York, 2008. available at
http://www.cs.york.ac.uk/ftpdir/reports/2008/YCS/432/YCS-2008-432.pdf.

[8] Zhong Deng and Jane win-shih Liu. Scheduling real-time applications in Open environment. InProceedings of the18th

IEEE Real-Time Systems Symposium, pages 308–319, San Francisco, CA, U.S.A., December 1997.

13



[9] Arvind Easwaran, Madhukar Anand, and Insup Lee. Compositional analysis framework using EDP resource models.
In Proceedings of the28th IEEE International Real-Time Systems Symposium, pages 129–138, Tucson, AZ, USA, 2007.

[10] Michael Fekete.Über die verteilung der wurzeln bei gewissen algebraischengleichungen mit ganzzahligen koeffizien-
ten. Mathematische Zeitschrift, 17:228–249, 1923.

[11] James Gosling and Henry McGilton. The java language environment: A white paper. Technical report, Sun Microsys-
tems, 1996. available athttp://java.sun.com/docs/white/langenv/.

[12] Hennadiy Leontyev and James H. Anderson. A hierarchical multiprocessor bandwidth reservation scheme with timing
guarantees. InProceedings of the20th Euromicro Conference on Real-Time Systems, pages 191–200, Prague, Czech
Republic, July 2008.

[13] Giuseppe Lipari and Enrico Bini. Resource partitioning among real-time applications. InProceedings of the15th

Euromicro Conference on Real-Time Systems, pages 151–158, Porto, Portugal, July 2003.

[14] Clifford W. Mercer, Stefan Savage, and Hydeyuki Tokuda. Processor capacity reserves: Operating system support for
multimedia applications. InProceedings of IEEE International Conference on Multimedia Computing and Systems,
pages 90–99, Boston, MA, U.S.A., May 1994.

[15] Aloysius K. Mok, Xiang Feng, and Deji Chen. Resource partition for real-time systems. InProceedings of the7th IEEE
Real-Time Technology and Applications Symposium, pages 75–84, Taipei, Taiwan, May 2001.

[16] Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical scheduling framework for virtual clustering multiprocessors.
In Proceedings of the20th Euromicro Conference on Real-Time Systems, pages 181–190, Prague, Czech Republic, July
2008.

[17] Insik Shin and Insup Lee. Periodic resource model for compositional real-time guarantees. InProceedings of the24th

Real-Time Systems Symposium, pages 2–13, Cancun, Mexico, December 2003.

14


