
Field-Programmable

Gate Arrays

Paolo Burgio
paolo.burgio@unimore.it

mailto:paolo.burgio@unimore.it

©2017 University of Modena and Reggio Emilia

✓ Introduction to FPGAs

✓ How to use them

✓ Heterogeneous programming

✓ FPGA-based heterogeneous programming

✓ How to program it

✓ Xilinx: now and soon…

Parallel Programming LM – 2017/18 2

Outline

©2017 University of Modena and Reggio Emilia

✓ (A)Symmetric multi-processing

– Single or multi-core

Parallel Programming LT – 2017/18 3

The world, till now

CPU

0

One or

more cache

levels

Main memory

CPU

1

One or

more cache

levels

CPU

2

One or

more cache

levels

CPU

3

One or

more cache

levels

I/O system

Can be 1 bus, N

busses, or any

network

©2017 University of Modena and Reggio Emilia

“Reconfigurable computing is intended to fill the gap between hardware and

software, achieving potentially much higher performance than software, while

maintaining a higher level of flexibility than hardware

(K. Compton and S. Hauck, Reconfigurable Computing: a Survey of Systems and Software, 2002)

Parallel Programming LM – 2017/18 4

Reconfigurable Hardware

©2017 University of Modena and Reggio Emilia

We are used to have

✓ On one (left) side, full programmable artifacts (software)

– Run on single or multi-cores, designed for General Purpose computing

✓ On one (right) side, hardware blocks to perform specific (subset of) operations

– DSPs, co-processors

Parallel Programming LM – 2017/18 5

…eh?

©2017 University of Modena and Reggio Emilia

…we had a "sea" of hardware blocks that we can program as we want

✓We can build cores

✓We can build co-processors

✓We can build what we want

What would you use them?

✓ For prototyping!

Hardware developent process is long and cumbersome

✓ Imagine a full-fledged cores

✓ Typically, years of development

✓ You can "try, and see whether it works"

Parallel Programming LM – 2017/18 6

What if?

©2017 University of Modena and Reggio Emilia

✓ Logic gates (1950s-60s)

✓ Regular structures for two-level logic (1960s-70s)

– Muxes and decoders, PLAs

✓ Programmable sum-of-products arrays (1970s-80s)

– PLDs, complex PLDs

✓ Programmable gate arrays (1980s-90s)

– densities high enough to permit entirely new class of

application, e.g., prototyping, emulation, acceleration

Parallel Programming LM – 2017/18 7

History of reconfigurable echnologies

trend toward

higher levels

of integration

©2017 University of Modena and Reggio Emilia

✓ "A field-programmable gate array (FPGA) is an integrated circuit

designed to be configured by a customer or a designer after

manufacturing."

✓ Traditionally used for prototyping

– Takes minutes vs years for "real" hardware

✓ Tech has evolved so they are actively used in production settings

– Less energy-efficient than a GPU

– Way more flexible

Integrated into System-on-chips

✓ As reconfigurable accelerator

✓We'll see later…

Parallel Programming LM – 2017/18 8

Field-programmable gate arrays

©2017 University of Modena and Reggio Emilia

✓ Logic blocks

– to implement combinational and

sequential logic

✓ Interconnect

– wires to connect inputs and outputs

to logic blocks

✓ I/O blocks

– special logic blocks at periphery of

device for external connections

Key questions:

✓ how to make logic blocks

programmable?

✓ how to connect the wires?

✓ after the chip has been fabbed

Parallel Programming LM – 2017/18 9

FPGAs

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 10

Commercial FPGA companies

©2017 University of Modena and Reggio Emilia

CLB - Configurable Logic Block

✓ Built-in fast carry logic

✓ Can be used as memory

✓ Three types of routing

– direct

– general-purpose

– long lines of various lengths

✓ RAM-programmable

– can be reconfigured

Parallel Programming LM – 2017/18 11

(Xilinx) Programmable Gate Arrays

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 12

Simplified CLB Structure

©2017 University of Modena and Reggio Emilia

LUT contains Memory Cells to implement small logic functions

✓ Each cell holds ‘0’ or ‘1’

✓ Programmed with outputs of Truth Table

✓ Inputs select content of one of the cells as output

Parallel Programming LM – 2017/18 13

LookUp Tables

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 14

Example: 4-input AND gate

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 15

Interconnection Network

©2017 University of Modena and Reggio Emilia

✓ Determine the configuration bits for the following circuit implementation

in a 2x2 FPGA, with I/O constraints as shown in the following figure.

Assume 2-input LUTs in each CLB

Parallel Programming LM – 2017/18 16

Example

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 17

Configure CLBs

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 18

Placement: select CLBs

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 19

Routing: Select path

©2017 University of Modena and Reggio Emilia

✓ The configuration bitstream must include ALL CLBs and SBs, even

unused ones

✓ CLB0: 00011

✓ CLB1: ?????

✓ CLB2: 01100

✓ CLB3: XXXXX

✓ SB0: 000000

✓ SB1: 000010

✓ SB2: 000000

✓ SB3: 000000

✓ SB4: 000001

Parallel Programming LM – 2017/18 20

Configuration Bitstream

©2017 University of Modena and Reggio Emilia

✓Object Code (aka "Bitstream): the executable active physical (either HW

or SW) implementation of a given functionality

✓ Core: a specific representation of a functionality. It is possible, for

example, to have a core described in VHDL, in C or in an intermediate

representation (e.g. a DFG)

✓ IP-Core: a core described using a HD Language combined with its

communication infrastructure (i.e. the bus interface)

✓ Reconfigurable Functional Unit: an IP-Core that can be plugged and/or

unplugged at runtime in an already working architecture

✓ Reconfigurable Region: a portion of the device area used to implement

a reconfigurable core

Parallel Programming LM – 2017/18 21

Some Definitions

©2017 University of Modena and Reggio Emilia

Can't design FPGAs by hand!

✓ way too much logic to manage, hard to make changes

✓ Hardware description languages (HDL), es: Verilog, VHDL

– specify functionality of logic at a high level

✓ Logic synthesis

– process of compiling HDL program into logic gates and flip-flops

✓ Validation - high-level simulation to catch specification errors

– verify pin-outs and connections to other system components

– low-level to verify and check performance

Parallel Programming LM – 2017/18 22

Computer-Aided Design

©2017 University of Modena and Reggio Emilia

✓ Technology mapping

– map the logic onto elements available in the implementation technology

(LUTs for Xilinx FPGAs)

✓ Placement and routing

– assign logic blocks to functions

– make wiring connections

✓ Partitioning and constraining

– if design does not fit or is unroutable as placed split into multiple chips

– if design it too slow prioritize critical paths, fix placement of cells, etc.

– few tools to help with these tasks exist today

✓Generate programming files - bits to be loaded into chip for

configuration

Parallel Programming LM – 2017/18 23

CAD Tool Path (cont’d)

High-level synthesis

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 25

Electronic System Level Design (ESLD)

©2017 University of Modena and Reggio Emilia

✓ Starting from a Register Transfer Level

description, generate an IC layout

Parallel Programming LM – 2017/18 26

Typical HW design flow

RTL

Logic synthesis

Gate level netlist

Layout

GDSII

©2017 University of Modena and Reggio Emilia

✓ Starting from a Register Transfer Level

description, generate an IC layout

Parallel Programming LM – 2017/18 27

Typical HW design flow

RTL

Logic synthesis

Gate level netlist

Layout

GDSII

Algorithm

#define N 2

typedef int matrix[N][N];

int main(const matrix A, matrix C)

{

const matrice B ={{1, 2},{ 3, 4}};

int tmp;

int i,j,k;

for (i=0;i<N;i++)

for (j=0;j<N;j++){

tmp = A[i][0]*B[0][j];

for (k=1;k<N - 1;k++)

tmp = tmp + A[i][k] * B[k][j];

C[i][j] = tmp + A[i][N-1] * B[N-1][j];

}

return 0;

}

High-Level synthesis

SystemC simulation

models (CABA/TLM)

Virtual prototyping

©2017 University of Modena and Reggio Emilia

✓ Starting from C code, generate RTL, and then, layout

– Typically, HW accelerators (FFT?) Ips

– Can also synthesize a fully fledged processor!!

– Soft-cores

Parallel Programming LM – 2017/18 28

High-Level Synthesis

RTL

Logic synthesis

Gate level netlist

Layout

GDSII

Algorithm

#define N 2

typedef int matrix[N][N];

int main(const matrix A, matrix C)

{

const matrice B ={{1, 2},{ 3, 4}};

int tmp;

int i,j,k;

for (i=0;i<N;i++)

for (j=0;j<N;j++) {

tmp = A[i][0]*B[0][j];

for (k=1;k<N - 1;k++)

tmp = tmp + A[i][k] * B[k][j];

C[i][j] = tmp + A[i][N-1] *

B[N-1][j];

}

return 0;

}

High-Level synthesis

©2017 University of Modena and Reggio Emilia

✓ From C code

– Generates the "physical" representation of Hardware modules

– Registry Transfer Level, RTL

– That will be deployed on the board

✓ Automatically

Parallel Programming LM – 2017/18 29

It is basically, a compiler!

©2017 University of Modena and Reggio Emilia

✓ No pointers

– Statically unresolved

– Arrays are allowed!

✓ No standard function call

– printf, scanf, fopen, malloc…

✓ Function calls are allowed

– Can be in-lined or not

✓ Nearly all datatypes are allowd

– Specific datatypes are encouraged

– Bit accurate integers, fixed point, signed, unsigned…

Parallel Programming LM – 2017/18 30

Synthesizable C subset

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 31

Example #1: a simple C code

#define N 16

int main(int data_in, int *data_out) {

static const int Coeffs [N] = { 98, -39, -327, 439, 950, -2097, -1674, 9883,

9883, -1674, -2097, 950, 439, -327, -39, 98 };

int Values[N];

int temp;

int sample,i,j;

sample = data_in;

temp = sample * Coeffs[N-1];

for(i = 1; i<=(N-1); i++) {

temp += Values[i] * Coeffs[N-i-1];

}

for(j=(N-1); j>=2; j-=1) {

Values[j] = Values[j-1];

}

Values[1] = sample;

*data_out=temp;

return 0;

}

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 32

Example #2: bit accurate C++ code

#include "ac_fixed.h" // From Mentor Graphics

#define PORT_SIZE ac_fixed<16, 12, true, AC_RND,AC_SAT> // 16 bits, 12 bits after the \

point, quantization = rounding, overflow = saturation

#define N 16

int main(PORT_SIZE data_in, PORT_SIZE &data_out) {

static const PORT_SIZE Coeffs [N]= { 1.1, 1.5, 1.0, 1.0, 1.7, 1.8, 1.2, 1.0,

1.6, 1.0, 1.5, 1.1, 1.9, 1.3, 1.4, 1.7 };

PORT_SIZE Values[N];

PORT_SIZE temp;

PORT_SIZE sample;

sample= data_in;

temp = sample * Coeffs[N-1];

for(int i = 1; i<=(N-1); i++) {

temp = Values [i] * Coeffs[N-i-1] + temp;

}

for(int j=(N-1); j>=2; j-=1) {

Values[j] = Values [j-1];

}

Values[1] = sample;

data_out=temp;

return 0;

}

©2017 University of Modena and Reggio Emilia

✓ Loops
– Loop pipelining,

– Loop unrolling

– Loop merging

– Loop tiling

– …

✓ Arrays mapping
– Arrays can be mapped on memory banks

– Arrays can be synthesized as registers

– Constant arrays can be synthesized as logic

– …

✓ Functions
– Function calls can be in-lined

– Function is synthesized as an operator
• Sequential, pipelined, functional unit…

– Single function instantiation

– …

Parallel Programming LM – 2017/18 33

High-level transformations

©2017 University of Modena and Reggio Emilia

CLA Booth

Wallace

CLA

Operators library

RCA RCA

Adders Multipliers Subtractors

HLS

HLS steps: Inputs

Specification

O = ((n01+n02)*n12)-(n21+n22)

Specification

RTL

architecture

Operators

Lib.

Constr.

Obj.

Architecture
generation

Selection Allocation

Schedulin

g
Binding

Compilation

Intermediate

format

11Parallel Programming LM – 2017/18 34

©2017 University of Modena and Reggio Emilia

CLA Booth

Wallace

CLA

Operators library

RCA RCA

Adders Multipliers Subtractors

HLS steps: Compilation

Intermediate representation

n21 n22
N0

N1

N3

+

×

-

+

N2

n01 n02

n11 n12

n31 n32

O

Architecture
generation

Specification

RTL

architecture

Operators

Lib.

Selection Allocation

Schedulin

g
Binding

Compilation

Intermediate

format

Constr.

Obj.

Specification

O = ((n01+n02)*n12)-(n21+n22)

12Parallel Programming LM – 2017/18 35

©2017 University of Modena and Reggio Emilia

Intermediate representation

n21 n22
N0

N1

N3

+

×

-

+

N2

n01 n02

n11 n12

n31 n32

O

Architecture
generation

Specification

RTL

architecture

Operators

Lib.

Selection Allocation

Schedulin

g
Binding

Compilation

Intermediate

format

Constr.

Obj.

Specification

O = ((n01+n02)*n12)-(n21+n22)CLA Booth

Wallace

CLA

Operators library

RCA RCA

Adders Multipliers Subtractors

+ +

×

-

13

HLS steps: Selection

Parallel Programming LM – 2017/18 36

©2017 University of Modena and Reggio Emilia

*1

*1
*1

CLA Booth

Wallace

CLA

Operators library

RCA RCA

Adders Multipliers Subtractors

Intermediate representation

n21 n22
N0

N1

N3

+

×

-

+

N2

n01 n02

n11 n12

n31 n32

O

Architecture
generation

Specification

RTL

architecture

Operators

Lib.

Selection Allocation

Schedulin

g
Binding

Compilation

Intermediate

format

Constr.

Obj.

Specification

O = ((n01+n02)*n12)-(n21+n22)

Booth

RCA
RCA

14

HLS steps: Allocation

Parallel Programming LM – 2017/18 37

©2017 University of Modena and Reggio Emilia

Architecture
generation

Specification

RTL

architecture

Operators

Lib.

Selection Allocation

Schedulin

g
Binding

Compilation

Intermediate

format

Constr.

Obj.

*1

*1
*1

Intermediate representation

n21 n22
N0

N1

N3

+

×

-

+

N2

n01 n02

n11 n12

n31 n32

O

Booth

RCA
RCA

+N0

×N1

-N3

+N2

T (pipeline)

15

HLS steps: Scheduling

Parallel Programming LM – 2017/18 38

©2017 University of Modena and Reggio Emilia

n01

n21, n11

n22, n12

R1

R3

R4

n02 R2

n31 R5

n32 R6

Data Binding

Architecture
generation

Specification

RTL

architecture

Operators

Lib.

Selection Allocation

Schedulin

g
Binding

Compilation

Intermediate

format

Constr.

Obj.

*1

*1
*1

Intermediate representation

n21 n22
N0

N1

N3

+

×

-

+

N2

n01 n02

n11 n12

n31 n32

O

Booth

RCA
RCA

+N0

×N1

-N3

+N2

T (pipeline)

Operation Binding

16

HLS steps: Binding

Parallel Programming LM – 2017/18 39

©2017 University of Modena and Reggio Emilia

n01

n21, n11

n22, n12

R1

R3

R4

n02 R2

n31 R5

n32 R6

Data Binding

Architecture
generation

Specification

RTL

architecture

Operators

Lib.

Selection Allocation

Schedulin

g
Binding

Compilation

Intermediate

format

Constr.

Obj.

+N0

×N1

-N3

+N2

T (pipeline)

17

Controller

• FSM controller

• Programmable controller

Datapath components

• Storage components

• Functional units

• Connection components

+

R
3

R
1

R
4

R
2

M
U

X
M

U
X

R
5

R
6

Controller

Datapath

-x

+

R
3

R
1

R
4

R
2

M
U

X
M

U
X

R
5

R
6

Controller

Datapath

+

R
3

R
1

R
4

R
2

M
U

X
M

U
X

M
U

X
M

U
X

R
5

R
6

Controller

Datapath

-x

HLS steps: Binding

Parallel Programming LM – 2017/18 40

©2017 University of Modena and Reggio Emilia

The FPGA development tool

✓ Starting from C or RTL…

✓…generates and deploys the IP on the FPGA

✓ ..as well as SW artifacts to interact with them (drivers)

✓ Let's see it in action!

Parallel Programming LM – 2017/18 41

Xilinx's Vivado SDK

Heterogeneous

systems

©2017 University of Modena and Reggio Emilia

✓Multi-core General purpose host

– The "traditional" core

✓ Coupled with a co-processor/accelerator

Host-accelerator model

Core

Core

(Host)

Memory

PCI

EXPRESS
CHIPSET

Accelerator

Parallel Programming LM – 2017/18 43

©2017 University of Modena and Reggio Emilia

GP-GPU based systems

✓ As in your laptop

– …yes, the one under your nose….

✓ Host => control-based code

✓GPU => regular, highly-parallel code

Parallel Programming LM – 2017/18 44

Something you are used to

Core

Core

(Host)

Memory

PCI

EXPRESS
CHIPSET

©2017 University of Modena and Reggio Emilia

GP-GPU based embedded platforms

✓…this is not under your nose….

✓ Still, host + accelerator model

✓ Communicate via shared memory

– No PCI-express

– Host memory "pull"

– FPGA mem/BRAM "push"

Something you are less used to

Core

Core

System Bus

Parallel Programming LM – 2017/18 45

(Shared)

Memory

©2017 University of Modena and Reggio Emilia

✓ Can create hundreds of small HW accelerators (de/crypt, de/coders)

✓ Can even create a single core (as co-processor)

– Soft-cores

✓ Communicate via shared memory

– No PCI-express

– Host memory "pull"

– FPGA mem/BRAM "push"

FPGA-based accelerators

Core

Core

(Host)

Memory

System Bus

Parallel Programming LM – 2017/18 46

IP

IP

Soft-core

FPGA Memory (BRAM)

BRAM

©2017 University of Modena and Reggio Emilia

✓ Dual-core ARM host

✓ Programmable Logic

Shared memory

✓ Host caches

✓ Host SPM (On-chip

Memory)

✓ External DDR banks

Connectivity

✓ AMBA AXI connector

✓ Highly scalable

✓ Cache coherency port -

ACP

Parallel Programming LM – 2017/18 47

Example: Xilinx Zynq
L3 Memory

L1/2

Memory

Xilinx FPGA SoCs

©2017 University of Modena and Reggio Emilia

✓ Dual-core ARM host

✓ Programmable Logic

✓ Shared memory

Parallel Programming LM – 2017/18 49

Xilinx Zynq-7000

©2017 University of Modena and Reggio Emilia

FAMILY PART Logic Cells (K) Block RAM (Mb) DSP Slices Maximum I/O Pins Maximum Transceiver CountVideo Code Unit (VCU)

ZYNQ-7000

Z-7010 28 2,1 80 100 - -

Z-7015 74 3,3 160 150 4 -

Z-7020 85 4,9 220 200 - -

Z-7030 125 9,3 400 250 4 -

Z-7035 275 17,6 900 362 16 -

Z-7045 350 19,1 900 362 16 -

Z-7100 444 26,5 2020 400 16 -

Parallel Programming LM – 2017/18 50

Xilinx Zynq-7000

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 51

Xilinx Zynq Ultrascale+

©2017 University of Modena and Reggio Emilia

✓ Zynq UltraScale+ CG

– Dual-core Cortex-A53 and a dual-core Cortex-R5 real-time processor

– Programmable logic

– Optimized for industrial motor control, sensor fusion, and industrial IoT

applications

✓ Zynq UltraScale+ EG

– Quad-core Cortex-A53 and dual-core Cortex-R5 real-time processors

– Mali-400 MP2 graphics processing unit + programmable logic

– Next-generation wired and 5G wireless infrastructure, cloud computing, and

Aerospace and Defense applications

✓ Zynq UltraScale+ EV

– EG platform + integrated H.264 / H.265 video codec

– Multimedia, automotive ADAS, surveillance, and other embedded vision

applications

Parallel Programming LM – 2017/18 52

Xilinx Zynq Ultrascale portfolio

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 53

Xilinx Zynq Ultrascale+

FAMILY PART Logic Cells (K) Block RAM (Mb) DSP Slices Maximum I/O Pins Maximum Transceiver CountVideo Code Unit (VCU)

ZYNQ UltraScale+ CG

ZU2CG 103 5,3 240 252 - -

ZU3CG 154 7,6 360 252 - -

ZU4CG 192 18,5 728 252 - -

ZU5CG 256 23,1 1248 252 - -

ZU6CG 469 25,1 1973 328 - -

ZU7CG 504 38 1728 464 - -

ZU9CG 600 32,1 2520 328 - -

ZYNQ UltraScale+ EG

ZU2EG 103 5,3 240 252 - -

ZU3EG 154 7,6 360 252 - -

ZU4EG 192 18,5 728 252 - -

ZU5EG 256 23,1 1248 252 - -

ZU6EG 469 25,1 1973 328 - -

ZU7EG 504 38 1728 464 - -

ZU9EG 600 32,1 2520 328 - -

ZU11EG 653 43,6 2928 512 - -

ZU15EG 747 57,7 3528 328 - -

ZU17EG 926 56,7 1590 668 - -

ZU19EG 1143 70,6 1968 668 - -

ZYNQ UltraScale+ EV

ZU4EV 192 18,5 728 252 - 1

ZU5EV 256 23,1 1248 252 - 1

ZU7EV 504 38 1728 464 - 1

©2017 University of Modena and Reggio Emilia

✓ Complete development kit with Xilinx Zynq-7000 SoC

✓ Basic support for rapid prototyping and proof-of-concept development

✓ Small ☺

Parallel Programming LM – 2017/18 54

Zedboard

©2017 University of Modena and Reggio Emilia

✓ System-On-Module (SOM)

✓ Based on the Ultrascale architecture: no host!

✓ Packages system memory, Ethernet, USB, and configuration memory

needed for an embedded processing system

✓ UltraZed EG

✓ Ultrazed EV

Parallel Programming LM – 2017/18 55

UltraZed

©2017 University of Modena and Reggio Emilia

✓ Open-source project from Xilinx for design

✓ Uses Python language and libraries

✓ Maximizes productivity

Processor: Dual-Core ARM® Cortex®-A9

FPGA: 1.3 M reconfigurable gates

Memory: 512MB DDR3 / FLASH

Storage: Micro SD card slot

Video: HDMI In and HDMI Out

Audio: Mic in, Line Out

Network: 10/100/1000 Ethernet

Expansion: USB Host connected to ARM PS

Interfaces: 1x Arduino Header, 2x Pmod (49 GPIO)

GPIO: 16 GPIO (65 in total with Arduino and Pmods)

Other I/O: 6x User LEDs, 4x Pushbuttons, 2x Switches

Dimensions: 3.44” x 4.81” (87mm x 122mm)

Parallel Programming LM – 2017/18 56

Xilinx Pynq: Python for Zynq

Programming

heterogeneous

systems

©2017 University of Modena and Reggio Emilia

Besides a tool to generate the actual IPs, we need

✓ A way to efficiently offload (pre-compiled) bitcode on the FPGA

– On-the-fly Dynamic Partial Rreconfiguration (DPR)

✓ Simple offloading subroutines to the newly created HW blocks

– To increase productivity

✓ In case we have SW cores, we need a toolchain to cross-compile for them

Parallel Programming LM – 2016/17 58

Heterogeneous programming

Core

Core

(Host)

Memory

System Bus

IP

IP

Soft-core

FPGA Memory (BRAM)

BRAM

©2017 University of Modena and Reggio Emilia

Code generated by logic synthesis tool

✓ Step 1 – generate the bitcode of the accelerator

– Vivado HLS

✓ Step 2 – plug the accelerator in a design

– Vivado

– Include processing system (ARM host) + accelerator + IC + …

✓ Step 3 – generate the design

– Bitcode ready to be installed of the IP

– Architecture configuration files (memory maps…)

– Software for host + drivers to communicate with the IP

Let's see this in action!

Parallel Programming LM – 2017/18 59

1) custom/"by hand"/CAD

©2017 University of Modena and Reggio Emilia

✓Offload-based programming models

– CUDA (for NVIDIA GPUs)

– OpenCL (for "generic" accelerators)

– OpenMP 4.5

Parallel Programming LM – 2016/17 60

2) offload-based programming

Device

Host

Kernel #0

Kernel #1

Kernel #N

Kernel #0

Kernel #
…

©2017 University of Modena and Reggio Emilia

✓OpenCL was initiated by Apple and maintained by the Khronos Group

(also home of OpenGL) as an industry standard API

– For cross-platform parallel programming in CPUs, GPUs, DSPs, FPGAs,…

✓OpenCL host code is much more complex and tedious due to desire to

maximize portability and to minimize burden on vendors

Parallel Programming LM – 2017/18 61

OpenCL

©2017 University of Modena and Reggio Emilia

✓ An OpenCL “program” is a C program that contains one or more

“kernels” and any supporting routines that run on a target device

✓ An OpenCL kernel is the basic unit of parallel code that can be executed

on a target device

✓ In our case, an FPGA

Parallel Programming LM – 2017/18 62

OpenCL program

Kernel A

Kernel B

Kernel C

Misc support

functions

OpenCL Program

©2017 University of Modena and Reggio Emilia

✓ Integrated host+device app C program

– Serial or modestly parallel parts in host C code

– Highly parallel parts in device SPMD kernel C code

✓Queues of command/data transfer to be executed on the device

Parallel Programming LM – 2017/18 63

OpenCL execution model

. . .

. . .

©2017 University of Modena and Reggio Emilia

✓ Code that executes on target devices

✓ Kernel body is instantiated N times (data parallel) – work items

✓ Each OpenCL work item gets a unique index

✓ In the FPGA case, we use IP drivers instead of this

Parallel Programming LM – 2017/18 64

OpenCL kernels – software version

__kernel void vadd(__global const float *a,

__global const float *b,

__global float *result)

{

int id = get_global_id(0);

result[id] = a[id] + b[id];

}

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 65

Host code – create exec ctx

cl_int clerr = CL_SUCCESS;

cl_context clctx = clCreateContextFromType(0, CL_DEVICE_TYPE_ALL, NULL, NULL,

&clerr);

size_t parmsz;

clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz);

cl_device_id* cldevs = (cl_device_id *) malloc(parmsz);

clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, parmsz, cldevs, NULL);

cl_command_queue clcmdq = clCreateCommandQueue(clctx, cldevs[0], 0, &clerr);

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 66

Host code – create data buffers

float *h_A = …, *h_B = …;

// allocate device (GPU) memory

cl_mem d_A, d_B, d_C;

d_A = clCreateBuffer(clctx, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_A, NULL);

d_B = clCreateBuffer(clctx, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_B, NULL);

d_C = clCreateBuffer(clctx, CL_MEM_WRITE_ONLY,

N *sizeof(float), NULL, NULL);

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 67

Host code – device config setting

clkern=clCreateKernel(clpgm, “vadd", NULL);

…

clerr= clSetKernelArg(clkern, 0, sizeof(cl_mem),(void *)&d_A);

clerr= clSetKernelArg(clkern, 1, sizeof(cl_mem),(void *)&d_B);

clerr= clSetKernelArg(clkern, 2, sizeof(cl_mem),(void *)&d_C);

clerr= clSetKernelArg(clkern, 3, sizeof(int), &N);

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 68

Host code – kernel launch

cl_event event=NULL;

clerr= clEnqueueNDRangeKernel(clcmdq, clkern, 2, NULL,

Gsz, Bsz, 0, NULL, &event);

clerr= clWaitForEvents(1, &event);

clEnqueueReadBuffer(clcmdq, d_C, CL_TRUE, 0,

N*sizeof(float), h_C, 0, NULL, NULL);

clReleaseMemObject(d_A);

clReleaseMemObject(d_B);

clReleaseMemObject(d_C);

}

©2017 University of Modena and Reggio Emilia

✓ Introduces the concept of device

– Execute structured block onto device

– map clause to move data to-from the device

– nowait for asynch execution

Parallel Programming LM – 2017/18 69

OpenMP 4.5 (yr 2011)

#pragma omp target [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([target :] scalar-expression)

device(integer-expression)

private(list)

firstprivate(list)

map([[map-type-modifier[,]] map-type:] list)

is_device_ptr(list)

defaultmap(tofrom:scalar)

nowait

depend(dependence-type: list)

©2017 University of Modena and Reggio Emilia

✓ ESA application for infrared signal processing

– Here, runs on a Kalray MPPA manycore

Parallel Programming LM – 2017/18 70

OpenMP 4.5 in action

for (i = 0; i < DIM_Y; i++)

{

for (j = 0; j < DIM_X; j=j+4)

{

UINT16BIT (*p_currentFrame1) [BS] = currentFrame[i][j];

UINT16BIT (*p_currentFrame2) [BS] = currentFrame[i][j+1

#pragma omp target firstprivate(j) \

map(to: saturationLimit[0:32]) \

map(to: coeffOfNonLinearityPolynomial[0:32][0:4]) \

map(tofrom: p_currentFrame1[0:bs][0:bs]) \

map(tofrom: p_currentFrame2[0:bs][0:bs \

device(device_id) priority_id(0) nowait

{

phase1 (p_currentFrame1,p_currentFrame2

saturationLimit, coeffOfNonLinearityPolynomial, j);

}

©2017 University of Modena and Reggio Emilia

Programming model

Parallel Programming LM – 2017/18 71

The Hercules framework

Several accelerators «flavours»

Offloading mechanism and communication API

«Big» cores
«Little»
cores

Host subsystem

GPU
subsystem

CUDA
fware &
runtime

Processing
Clusters/cores

1

FPGA
subsystem

Softcores +
accelerators

HW IP

3

Platform Abstraction

Application

Application

Application

Many-core
subsystem

2

Neural Networks on

FPGA accelerators

©2017 University of Modena and Reggio Emilia

✓ Bio-inspired

✓ Based on neurons arranged in layers

– And sub-layers

✓ Convolutional neural network

– Neurons perform Convolutions

Neural networks

Parallel Programming LM – 2017/18 73

©2017 University of Modena and Reggio Emilia

✓ Computation-intensive

✓ Suitable for implementation in hardware

✓ In computer vision, blurring

Parallel Programming LM – 2017/18 74

Convolution

©2017 University of Modena and Reggio Emilia

✓ (Multistage Hubel-Wiesel system)

Parallel Programming LM – 2017/18 75

The convolutional net model

pooling
subsampling

“Simple cells” “Complex

cells”

Multiple
convolutions

Retinotopic feature maps

©2017 University of Modena and Reggio Emilia Parallel Programming LM – 2017/18 76

The convolutional net model (cont'd)

Core

Core

(Host)

Memory

System Bus

input

83x8

3

Layer 1

64x75x75
Layer 2

64@14x14

Layer 3

256@6x6 Layer 4

256@1x1 Output

101

9x9

convolution

(64 kernels)

9x9

convolution

(4096 kernels)

10x10 pooling,

5x5 subsampling
6x6 pooling

4x4 subsamp

©2017 University of Modena and Reggio Emilia

✓ Network topology

– How many layers and sublayers?

– How big they are?

– How are they connected?

✓ Neuron type

– CNN

– int/float datatypes

– How to perform pooling?

Parallel Programming LM – 2017/18 77

Network parameters

input

83x83

Layer 1

64x75x75
Layer 2

64@14x14

Layer 3

256@6x6 Layer 4

256@1x1 Output

101

9x9

convolution

(64 kernels)

9x9

convolution

(4096 kernels)

10x10 pooling,

5x5 subsampling
6x6 pooling

4x4 subsamp

©2017 University of Modena and Reggio Emilia

"The training problem"

✓ To set the weights/CNN kernels

✓ Training set must be huge

A "big data" problem

✓ Why do you think Google does self-driving cars?

✓ Why do you think big cloud players want our data?

Parallel Programming LM – 2017/18 78

Training a network

©2017 University of Modena and Reggio Emilia

✓We can implement one or more complete CNN layers on FPGA

– How many?

✓We can use float, int, datatypes

– Int are smaller, but still efficient

✓ Binaries NN, where input weights are +-1

– Smaller, more sutable for area-constrained

Parallel Programming LM – 2017/18 79

CNN on FPGA

Name Supported Architecture

ZynqNet XC-7Z045

BNN

GraphGen-based CNN

Pre-Trained CNN based on LeNet5

GoogLeNet

AlexNet

VGG-16

SSD-300

FCN-AlexNet

ZCU102

Z-7020

©2017 University of Modena and Reggio Emilia

✓ Trained with ML frameworks Caffè and TensorFlow

✓ Nuraghe accelerator, configurable for specific CNN

✓ CNN compiler, which translates the CNN description from Caffè or TF in

a program which runs on Nuraghe/Zynq

Parallel Programming LM – 2017/18 80

Nuraghe NN on FPGA

©2017 University of Modena and Reggio Emilia

✓ "Calcolo parallelo" website

– http://hipert.unimore.it/people/marko/courses/programmazione_parallela/

✓ My contacts

– paolo.burgio@unimore.it

– http://hipert.mat.unimore.it/people/paolob/

✓ Xilinx Zynq-7000 All Programmable SoC

– https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

✓ Pynq

– http://www.pynq.io/

✓ Xilinx Ultrascale

– https://www.xilinx.com/products/technology/ultrascale.html

References

Parallel Programming LM – 2017/18 81

http://hipert.unimore.it/people/marko/courses/programmazione_parallela/
mailto:paolo.burgio@unimore.it
http://hipert.mat.unimore.it/people/paolob/
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.pynq.io/
https://www.xilinx.com/products/technology/ultrascale.html

