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✓ Introduction to FPGAs

✓ How to use them

✓ Heterogeneous programming

✓ FPGA-based heterogeneous programming

✓ How to program it

✓ Xilinx: now and soon…
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Outline
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✓ (A)Symmetric multi-processing

– Single or multi-core
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“Reconfigurable computing is intended to fill the gap between hardware and

software, achieving potentially much higher performance than software, while

maintaining a higher level of flexibility than hardware

(K. Compton and S. Hauck, Reconfigurable Computing: a Survey of Systems and Software, 2002)

Parallel Programming LM – 2017/18 4

Reconfigurable Hardware
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We are used to have

✓ On one (left) side, full programmable artifacts (software)

– Run on single or multi-cores, designed for General Purpose computing

✓ On one (right) side, hardware blocks to perform specific (subset of) operations

– DSPs, co-processors
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…eh?
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…we had a "sea" of hardware blocks that we can program as we want

✓We can build cores

✓We can build co-processors

✓We can build what we want

What would you use them?

✓ For prototyping!

Hardware developent process is long and cumbersome

✓ Imagine a full-fledged cores

✓ Typically, years of development

✓ You can "try, and see whether it works"
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What if?
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✓ Logic gates (1950s-60s)

✓ Regular structures for two-level logic (1960s-70s)

– Muxes and decoders, PLAs

✓ Programmable sum-of-products arrays (1970s-80s)

– PLDs, complex PLDs

✓ Programmable gate arrays (1980s-90s)

– densities high enough to permit entirely new class of 

application, e.g., prototyping, emulation, acceleration

Parallel Programming LM – 2017/18 7

History of reconfigurable echnologies

trend toward

higher levels

of integration
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✓ "A field-programmable gate array (FPGA) is an integrated circuit 

designed to be configured by a customer or a designer after 

manufacturing."

✓ Traditionally used for prototyping

– Takes minutes vs years for "real" hardware

✓ Tech has evolved so they are actively used in production settings

– Less energy-efficient than a GPU

– Way more flexible

Integrated into System-on-chips

✓ As reconfigurable accelerator

✓We'll see later…
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Field-programmable gate arrays
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✓ Logic blocks

– to implement combinational and 

sequential logic

✓ Interconnect

– wires to connect inputs and outputs 

to logic blocks

✓ I/O blocks

– special logic blocks at periphery of 

device for external connections

Key questions:

✓ how to make logic blocks 

programmable?

✓ how to connect the wires?

✓ after the chip has been fabbed 
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FPGAs
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Commercial FPGA companies
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CLB - Configurable Logic Block

✓ Built-in fast carry logic

✓ Can be used as memory

✓ Three types of routing

– direct

– general-purpose

– long lines of various lengths

✓ RAM-programmable

– can be reconfigured
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(Xilinx) Programmable Gate Arrays
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Simplified CLB Structure
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LUT contains Memory Cells to implement small logic functions

✓ Each cell holds ‘0’ or ‘1’

✓ Programmed with outputs of Truth Table

✓ Inputs select content of one of the cells as output
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LookUp Tables
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Example: 4-input AND gate
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Interconnection Network
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✓ Determine the configuration bits for the following circuit implementation 

in a 2x2 FPGA, with I/O constraints as shown in the following figure. 

Assume 2-input LUTs in each CLB
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Example
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Configure CLBs
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Placement: select CLBs
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Routing: Select path
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✓ The configuration bitstream must include ALL CLBs and SBs, even 

unused ones

✓ CLB0: 00011

✓ CLB1: ?????

✓ CLB2: 01100

✓ CLB3: XXXXX

✓ SB0: 000000

✓ SB1: 000010

✓ SB2: 000000

✓ SB3: 000000

✓ SB4: 000001
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Configuration Bitstream
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✓Object Code (aka "Bitstream): the executable active physical (either HW 

or SW) implementation of a given functionality

✓ Core: a specific representation of a functionality. It is possible, for 

example, to have a core described in VHDL, in C or in an intermediate 

representation (e.g. a DFG)

✓ IP-Core: a core described using a HD Language combined with its 

communication infrastructure (i.e. the bus interface)

✓ Reconfigurable Functional Unit: an IP-Core that can be plugged and/or 

unplugged at runtime in an already working architecture

✓ Reconfigurable Region: a portion of the device area used to implement 

a reconfigurable core
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Some Definitions
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Can't design FPGAs by hand!

✓ way too much logic to manage, hard to make changes

✓ Hardware description languages (HDL), es: Verilog, VHDL

– specify functionality of logic at a high level

✓ Logic synthesis

– process of compiling HDL program into logic gates and flip-flops

✓ Validation - high-level simulation to catch specification errors

– verify pin-outs and connections to other system components

– low-level to verify and check performance

Parallel Programming LM – 2017/18 22

Computer-Aided Design
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✓ Technology mapping

– map the logic onto elements available in the implementation technology 

(LUTs for Xilinx FPGAs)

✓ Placement and routing

– assign logic blocks to functions

– make wiring connections

✓ Partitioning and constraining

– if design does not fit or is unroutable as placed split into multiple chips

– if design it too slow prioritize critical paths, fix placement of cells, etc.

– few tools to help with these tasks exist today

✓Generate programming files - bits to be loaded into chip for 

configuration

Parallel Programming LM – 2017/18 23

CAD Tool Path (cont’d)



High-level synthesis
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Electronic System Level Design (ESLD)
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✓ Starting from a Register Transfer Level 

description, generate an IC layout 

Parallel Programming LM – 2017/18 26

Typical HW design flow

RTL

Logic synthesis

Gate level netlist

Layout

GDSII
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✓ Starting from a Register Transfer Level 

description, generate an IC layout 
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Typical HW design flow

RTL

Logic synthesis

Gate level netlist

Layout

GDSII

Algorithm

#define N 2

typedef int matrix[N][N];

int main(const matrix A, matrix C)

{

const matrice B ={{1, 2},{ 3, 4}};

int tmp;

int i,j,k;

for (i=0;i<N;i++)

for (j=0;j<N;j++){

tmp = A[i][0]*B[0][j];

for (k=1;k<N - 1;k++)

tmp =  tmp + A[i][k] * B[k][j];

C[i][j] = tmp + A[i][N-1] * B[N-1][j];

}  

return 0;

}

High-Level synthesis

SystemC simulation 

models (CABA/TLM)

Virtual prototyping
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✓ Starting from C code, generate RTL, and then, layout

– Typically, HW accelerators (FFT?) Ips

– Can also synthesize a fully fledged processor!!

– Soft-cores
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High-Level Synthesis

RTL

Logic synthesis

Gate level netlist

Layout

GDSII

Algorithm

#define N 2

typedef int matrix[N][N];

int main(const matrix A, matrix C)

{

const matrice B ={{1, 2},{ 3, 4}};

int tmp;

int i,j,k;

for (i=0;i<N;i++)

for (j=0;j<N;j++) {

tmp = A[i][0]*B[0][j];

for (k=1;k<N - 1;k++)

tmp = tmp + A[i][k] * B[k][j];

C[i][j] = tmp + A[i][N-1] *

B[N-1][j];

}

return 0;

}

High-Level synthesis
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✓ From C code

– Generates the "physical" representation of Hardware modules

– Registry Transfer Level, RTL

– That will be deployed on the board

✓ Automatically

Parallel Programming LM – 2017/18 29

It is basically, a compiler!
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✓ No pointers

– Statically unresolved

– Arrays are allowed!

✓ No standard function call

– printf, scanf, fopen, malloc…

✓ Function calls are allowed

– Can be in-lined or not

✓ Nearly all datatypes are allowd

– Specific datatypes are encouraged

– Bit accurate integers, fixed point, signed, unsigned…

Parallel Programming LM – 2017/18 30

Synthesizable C subset
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Example #1: a simple C code

#define N 16

int main(int data_in, int *data_out) {

static const int Coeffs [N] = { 98, -39, -327, 439, 950, -2097, -1674, 9883,

9883, -1674, -2097, 950, 439, -327, -39, 98 };

int Values[N];

int temp;

int sample,i,j;

sample = data_in;

temp = sample * Coeffs[N-1];

for(i = 1; i<=(N-1); i++) {

temp += Values[i] * Coeffs[N-i-1];

}

for(j=(N-1); j>=2; j-=1 ) {

Values[j] = Values[j-1];

}

Values[1] = sample;

*data_out=temp;

return 0;

}
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Example #2: bit accurate C++ code

#include "ac_fixed.h" // From Mentor Graphics

#define PORT_SIZE ac_fixed<16, 12, true, AC_RND,AC_SAT> // 16 bits, 12 bits after the \

point, quantization = rounding, overflow = saturation

#define N 16

int main(PORT_SIZE data_in, PORT_SIZE &data_out) {

static const PORT_SIZE Coeffs [N]= { 1.1, 1.5, 1.0, 1.0, 1.7, 1.8, 1.2, 1.0,

1.6, 1.0, 1.5, 1.1, 1.9, 1.3, 1.4, 1.7 };

PORT_SIZE Values[N];

PORT_SIZE temp;

PORT_SIZE sample;

sample= data_in;

temp = sample * Coeffs[N-1];

for(int i = 1; i<=(N-1); i++) {

temp = Values [i] * Coeffs[N-i-1] + temp;

}

for(int j=(N-1); j>=2; j-=1 ) {

Values[j] = Values [j-1];

}

Values[1] = sample;

data_out=temp;

return 0;

}
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✓ Loops
– Loop pipelining, 

– Loop unrolling

– Loop merging

– Loop tiling

– …

✓ Arrays mapping
– Arrays can be mapped on memory banks

– Arrays can be synthesized as registers

– Constant arrays can be synthesized as logic

– …

✓ Functions
– Function calls can be in-lined

– Function is synthesized as an operator
• Sequential, pipelined, functional unit…

– Single function instantiation

– …
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High-level transformations
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HLS steps: Selection

Parallel Programming LM – 2017/18 36



©2017 University of Modena and Reggio Emilia
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HLS steps: Allocation
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HLS steps: Scheduling
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HLS steps: Binding
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The FPGA development tool

✓ Starting from C or RTL…

✓…generates and deploys the IP on the FPGA

✓ ..as well as SW artifacts to interact with them (drivers)

✓ Let's see it in action!

Parallel Programming LM – 2017/18 41

Xilinx's Vivado SDK



Heterogeneous 

systems
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✓Multi-core General purpose host

– The "traditional" core

✓ Coupled with a co-processor/accelerator

Host-accelerator model

Core

Core

(Host)

Memory

PCI

EXPRESS
CHIPSET

Accelerator
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GP-GPU based systems

✓ As in your laptop

– …yes, the one under your nose….

✓ Host => control-based code

✓GPU => regular, highly-parallel code
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Something you are used to

Core

Core

(Host)

Memory

PCI

EXPRESS
CHIPSET
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GP-GPU based embedded platforms

✓…this is not under your nose….

✓ Still, host + accelerator model

✓ Communicate via shared memory

– No PCI-express

– Host memory "pull"

– FPGA mem/BRAM "push"

Something you are less used to

Core

Core

System Bus

Parallel Programming LM – 2017/18 45

(Shared)

Memory
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✓ Can create hundreds of small HW accelerators (de/crypt, de/coders)

✓ Can even create a single core (as co-processor)

– Soft-cores

✓ Communicate via shared memory

– No PCI-express

– Host memory "pull"

– FPGA mem/BRAM "push"

FPGA-based accelerators

Core

Core

(Host)

Memory

System Bus
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IP

IP

Soft-core

FPGA Memory (BRAM)

BRAM
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✓ Dual-core ARM host

✓ Programmable Logic 

Shared memory

✓ Host caches

✓ Host SPM (On-chip 

Memory)

✓ External DDR banks

Connectivity

✓ AMBA AXI connector

✓ Highly scalable

✓ Cache coherency port -

ACP

Parallel Programming LM – 2017/18 47

Example: Xilinx Zynq
L3 Memory

L1/2 

Memory



Xilinx FPGA SoCs
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✓ Dual-core ARM host

✓ Programmable Logic 

✓ Shared memory
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Xilinx Zynq-7000
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FAMILY PART Logic Cells (K) Block RAM (Mb) DSP Slices Maximum I/O Pins Maximum Transceiver CountVideo Code Unit (VCU)

ZYNQ-7000

Z-7010 28 2,1 80 100 - -

Z-7015 74 3,3 160 150 4 -

Z-7020 85 4,9 220 200 - -

Z-7030 125 9,3 400 250 4 -

Z-7035 275 17,6 900 362 16 -

Z-7045 350 19,1 900 362 16 -

Z-7100 444 26,5 2020 400 16 -
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Xilinx Zynq-7000
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Xilinx Zynq Ultrascale+
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✓ Zynq UltraScale+ CG

– Dual-core Cortex-A53 and a dual-core Cortex-R5 real-time processor

– Programmable logic

– Optimized for industrial motor control, sensor fusion, and industrial IoT 

applications

✓ Zynq UltraScale+ EG

– Quad-core Cortex-A53 and dual-core Cortex-R5 real-time processors

– Mali-400 MP2 graphics processing unit + programmable logic

– Next-generation wired and 5G wireless infrastructure, cloud computing, and 

Aerospace and Defense applications

✓ Zynq UltraScale+ EV

– EG platform + integrated H.264 / H.265 video codec 

– Multimedia, automotive ADAS, surveillance, and other embedded vision 

applications

Parallel Programming LM – 2017/18 52

Xilinx Zynq Ultrascale portfolio
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Xilinx Zynq Ultrascale+

FAMILY PART Logic Cells (K) Block RAM (Mb) DSP Slices Maximum I/O Pins Maximum Transceiver CountVideo Code Unit (VCU)

ZYNQ UltraScale+ CG

ZU2CG 103 5,3 240 252 - -

ZU3CG 154 7,6 360 252 - -

ZU4CG 192 18,5 728 252 - -

ZU5CG 256 23,1 1248 252 - -

ZU6CG 469 25,1 1973 328 - -

ZU7CG 504 38 1728 464 - -

ZU9CG 600 32,1 2520 328 - -

ZYNQ UltraScale+ EG

ZU2EG 103 5,3 240 252 - -

ZU3EG 154 7,6 360 252 - -

ZU4EG 192 18,5 728 252 - -

ZU5EG 256 23,1 1248 252 - -

ZU6EG 469 25,1 1973 328 - -

ZU7EG 504 38 1728 464 - -

ZU9EG 600 32,1 2520 328 - -

ZU11EG 653 43,6 2928 512 - -

ZU15EG 747 57,7 3528 328 - -

ZU17EG 926 56,7 1590 668 - -

ZU19EG 1143 70,6 1968 668 - -

ZYNQ UltraScale+ EV

ZU4EV 192 18,5 728 252 - 1

ZU5EV 256 23,1 1248 252 - 1

ZU7EV 504 38 1728 464 - 1
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✓ Complete development kit with Xilinx Zynq-7000 SoC

✓ Basic support for rapid prototyping and proof-of-concept development

✓ Small ☺
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Zedboard
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✓ System-On-Module (SOM)

✓ Based on the Ultrascale architecture: no host!

✓ Packages system memory, Ethernet, USB, and configuration memory 

needed for an embedded processing system

✓ UltraZed EG

✓ Ultrazed EV
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UltraZed
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✓ Open-source project from Xilinx for design

✓ Uses Python language and libraries

✓ Maximizes productivity

Processor: Dual-Core ARM® Cortex®-A9

FPGA: 1.3 M reconfigurable gates

Memory: 512MB DDR3 / FLASH

Storage: Micro SD card slot

Video: HDMI In and HDMI Out

Audio: Mic in, Line Out

Network: 10/100/1000 Ethernet

Expansion: USB Host connected to ARM PS

Interfaces: 1x Arduino Header, 2x Pmod (49 GPIO)

GPIO: 16 GPIO (65 in total with Arduino and Pmods)

Other I/O: 6x User LEDs, 4x Pushbuttons, 2x Switches

Dimensions: 3.44” x 4.81” (87mm x 122mm)
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Xilinx Pynq: Python for Zynq



Programming 

heterogeneous 

systems
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Besides a tool to generate the actual IPs, we need

✓ A way to efficiently offload (pre-compiled) bitcode on the FPGA

– On-the-fly Dynamic Partial Rreconfiguration (DPR)

✓ Simple offloading subroutines to the newly created HW blocks

– To increase productivity

✓ In case we have SW cores, we need a toolchain to cross-compile for them
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Heterogeneous programming

Core

Core

(Host)

Memory

System Bus

IP

IP

Soft-core

FPGA Memory (BRAM)

BRAM
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Code generated by logic synthesis tool

✓ Step 1 – generate the bitcode of the accelerator

– Vivado HLS

✓ Step 2 – plug the accelerator in a design

– Vivado

– Include processing system (ARM host) + accelerator + IC + …

✓ Step 3 – generate the design

– Bitcode ready to be installed of the IP

– Architecture configuration files (memory maps…)

– Software for host + drivers to communicate with the IP

Let's see this in action!
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1) custom/"by hand"/CAD
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✓Offload-based programming models

– CUDA (for NVIDIA GPUs)

– OpenCL (for "generic" accelerators)

– OpenMP 4.5
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2) offload-based programming

Device

Host

Kernel #0

Kernel #1

Kernel #N

Kernel #0

Kernel #
…
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✓OpenCL was initiated by Apple and maintained by the Khronos Group 

(also  home of OpenGL) as an industry standard API

– For cross-platform parallel programming in CPUs, GPUs, DSPs, FPGAs,…

✓OpenCL  host code is much more complex and tedious due to desire to 

maximize portability and to minimize burden on vendors
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OpenCL
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✓ An OpenCL “program” is a C program that contains one or more 

“kernels” and any supporting routines that run on a target device

✓ An OpenCL kernel is the basic unit of parallel code that can be executed 

on a target device

✓ In our case, an FPGA

Parallel Programming LM – 2017/18 62

OpenCL program

Kernel A

Kernel B

Kernel C

Misc support

functions

OpenCL Program
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✓ Integrated host+device app C program

– Serial or modestly parallel parts in host C code

– Highly parallel parts in device SPMD kernel C code

✓Queues of command/data transfer to be executed on the device
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OpenCL execution model

. . .

. . .
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✓ Code that executes on target devices

✓ Kernel body is instantiated N times (data parallel) – work items

✓ Each OpenCL work item gets a unique index

✓ In the FPGA case, we use IP drivers instead of this 
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OpenCL kernels – software version

__kernel void  vadd(__global const float *a,

__global const float *b,

__global float *result) 

{

int id = get_global_id(0);

result[id] = a[id] + b[id];

}
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Host code – create exec ctx

cl_int clerr = CL_SUCCESS;

cl_context clctx = clCreateContextFromType(0, CL_DEVICE_TYPE_ALL, NULL, NULL, 

&clerr);

size_t parmsz;

clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz); 

cl_device_id* cldevs = (cl_device_id *) malloc(parmsz); 

clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, parmsz, cldevs, NULL); 

cl_command_queue clcmdq = clCreateCommandQueue(clctx, cldevs[0], 0, &clerr); 
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Host code – create data buffers

float *h_A = …,   *h_B = …;

// allocate device (GPU) memory

cl_mem d_A, d_B, d_C;

d_A = clCreateBuffer(clctx, CL_MEM_READ_ONLY | 

CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_A, NULL);

d_B = clCreateBuffer(clctx, CL_MEM_READ_ONLY | 

CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_B, NULL);

d_C = clCreateBuffer(clctx, CL_MEM_WRITE_ONLY, 

N *sizeof(float), NULL, NULL);        
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Host code – device config setting

clkern=clCreateKernel(clpgm, “vadd", NULL); 

…

clerr= clSetKernelArg(clkern, 0, sizeof(cl_mem),(void *)&d_A);

clerr= clSetKernelArg(clkern, 1, sizeof(cl_mem),(void *)&d_B);

clerr= clSetKernelArg(clkern, 2, sizeof(cl_mem),(void *)&d_C);

clerr= clSetKernelArg(clkern, 3, sizeof(int), &N);
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Host code – kernel launch

cl_event event=NULL; 

clerr= clEnqueueNDRangeKernel(clcmdq, clkern, 2, NULL, 

Gsz, Bsz, 0, NULL, &event);

clerr= clWaitForEvents(1, &event);

clEnqueueReadBuffer(clcmdq, d_C, CL_TRUE, 0, 

N*sizeof(float), h_C, 0, NULL, NULL);

clReleaseMemObject(d_A);

clReleaseMemObject(d_B);

clReleaseMemObject(d_C);

}
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✓ Introduces the concept of device

– Execute structured block onto device

– map clause to move data to-from the device

– nowait for asynch execution
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OpenMP 4.5 (yr 2011)

#pragma omp target [clause [[,]clause]...] new-line

structured-block

Where clauses can be:

if([ target :] scalar-expression)

device(integer-expression)

private(list)

firstprivate(list)

map([[map-type-modifier[,]] map-type: ] list)

is_device_ptr(list)

defaultmap(tofrom:scalar)

nowait

depend(dependence-type: list)
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✓ ESA application for infrared signal processing

– Here, runs on a Kalray MPPA manycore
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OpenMP 4.5 in action

for (i = 0; i < DIM_Y; i++)

{

for (j = 0; j < DIM_X; j=j+4)

{

UINT16BIT (*p_currentFrame1) [BS] = currentFrame[i][j];

UINT16BIT (*p_currentFrame2) [BS] = currentFrame[i][j+1

#pragma omp target firstprivate(j) \

map(to: saturationLimit[0:32]) \

map(to: coeffOfNonLinearityPolynomial[0:32][0:4]) \

map(tofrom: p_currentFrame1[0:bs][0:bs]) \

map(tofrom: p_currentFrame2[0:bs][0:bs \

device(device_id) priority_id(0) nowait

{

phase1 (p_currentFrame1,p_currentFrame2

saturationLimit, coeffOfNonLinearityPolynomial, j);

}
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Programming model
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The Hercules framework

Several accelerators «flavours»

Offloading mechanism and communication API

«Big» cores
«Little» 
cores

Host subsystem

GPU 
subsystem

CUDA 
fware & 
runtime

Processing
Clusters/cores

1

FPGA 
subsystem

Softcores + 
accelerators

HW IP

3

Platform Abstraction

Application

Application

Application

Many-core 
subsystem

2



Neural Networks on

FPGA accelerators
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✓ Bio-inspired

✓ Based on neurons arranged in layers

– And sub-layers

✓ Convolutional neural network

– Neurons perform Convolutions

Neural networks
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✓ Computation-intensive

✓ Suitable for implementation in hardware

✓ In computer vision, blurring
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Convolution
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✓ (Multistage Hubel-Wiesel system)

Parallel Programming LM – 2017/18 75

The convolutional net model

pooling  
subsampling

“Simple cells” “Complex

cells”

Multiple  
convolutions

Retinotopic feature maps
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The convolutional net model (cont'd)

Core

Core

(Host)

Memory

System Bus

input  

83x8

3

Layer 1

64x75x75
Layer 2  

64@14x14

Layer 3  

256@6x6 Layer 4  

256@1x1 Output  

101

9x9  

convolution  

(64 kernels)

9x9  

convolution  

(4096 kernels)

10x10 pooling,  

5x5 subsampling
6x6 pooling  

4x4 subsamp
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✓ Network topology

– How many layers and sublayers?

– How big they are?

– How are they connected?

✓ Neuron type

– CNN

– int/float datatypes

– How to perform pooling?
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Network parameters

input  

83x83

Layer 1

64x75x75
Layer 2  

64@14x14

Layer 3  

256@6x6 Layer 4  

256@1x1 Output  

101

9x9  

convolution  

(64 kernels)

9x9  

convolution  

(4096 kernels)

10x10 pooling,  

5x5 subsampling
6x6 pooling  

4x4 subsamp
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"The training problem"

✓ To set the weights/CNN kernels

✓ Training set must be huge

A "big data" problem

✓ Why do you think Google does self-driving cars?

✓ Why do you think big cloud players want our data?
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Training a network
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✓We can implement one or more complete CNN layers on FPGA

– How many?

✓We can use float, int, datatypes

– Int are smaller, but still efficient

✓ Binaries NN, where input weights are +-1

– Smaller, more sutable for area-constrained
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CNN on FPGA

Name Supported Architecture

ZynqNet XC-7Z045

BNN

GraphGen-based CNN

Pre-Trained CNN based on LeNet5

GoogLeNet

AlexNet

VGG-16

SSD-300

FCN-AlexNet

ZCU102

Z-7020
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✓ Trained with ML frameworks Caffè and TensorFlow

✓ Nuraghe accelerator, configurable for specific CNN

✓ CNN compiler, which translates the CNN description from Caffè or TF in 

a program which runs on Nuraghe/Zynq
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Nuraghe NN on FPGA
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✓ "Calcolo parallelo" website

– http://hipert.unimore.it/people/marko/courses/programmazione_parallela/

✓ My contacts

– paolo.burgio@unimore.it

– http://hipert.mat.unimore.it/people/paolob/

✓ Xilinx Zynq-7000 All Programmable SoC

– https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

✓ Pynq

– http://www.pynq.io/

✓ Xilinx Ultrascale

– https://www.xilinx.com/products/technology/ultrascale.html
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