
DRAM Bandwidth
Memory Coalescing in CUDA

Memory Access Performance

Accelerated Computing

GPU Teaching Kit

UNIMORE2

Objective

– To learn that memory bandwidth is a first-order performance factor
in a massively parallel processor

– DRAM bursts, banks, and channels

– All concepts are also applicable to modern multicore processors

UNIMORE3

Global Memory (DRAM) Bandwidth

– Ideal

– Reality

UNIMORE4

DRAM Core Array Organization
– Each DRAM core array has about 16M bits

– Each bit is stored in a tiny capacitor made of one transistor

Memory Cell

Core Array

Row

Decoder

Sense Amps

Column Latches

Mux

Row

Addr

Column

Addr

Off-chip Data

Wide

Narrow Pin Interface

UNIMORE5

A very small (8x2-bit) DRAM Core Array

d
ec

o
d
e

0 1 1

Sense amps

Mux

UNIMORE6

DRAM Core Arrays are Slow

– Reading from a cell in the core array is a very slow process
– DDR: Core speed = ½ interface speed

– DDR2/GDDR3: Core speed = ¼ interface speed

– DDR3/GDDR4: Core speed = ⅛ interface speed

– … likely to be worse in the future

d
e
c
o
d
e

To sense amps

A very small capacitance that

stores a data bit

About 1000 cells connected to each vertical line

UNIMORE7

DRAM Bursting

– For DDR{2,3} SDRAM cores clocked at 1/N speed of the interface:

– Load (N × interface width) of DRAM bits from the same row at once to an internal
buffer, then transfer in N steps at interface speed

– DDR3/GDDR4: buffer width = 8X interface width

UNIMORE8

DRAM Bursting Timing Example

time

Address bits to

decoder

Core Array access delay

bits

on interface

Non-burst timing

Burst timing

Modern DRAM systems are designed to always be accessed

in burst mode. Burst bytes are transferred to the processor

but discarded when accesses are not to sequential locations.

UNIMORE9

Multiple DRAM Banks

d
ec

o
d

e

Sense amps

Mux

d
ec

o
d

e

Sense amps

Mux

Bank 0 Bank 1

UNIMORE10

DRAM Bursting with Banking

Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time

UNIMORE11

GPU off-chip memory subsystem

– NVIDIA GTX280 GPU:
– Peak global memory bandwidth = 141.7GB/s

– Global memory (GDDR3) interface @ 1.1GHz
– (Core speed @ 276Mhz)

– For a typical 64-bit interface, we can sustain only about 17.6 GB/s (Recall DDR - 2 transfers
per clock)

– We need a lot more bandwidth (141.7 GB/s) – thus 8 memory channels

UNIMORE12

Objective

– To learn that memory coalescing is important for effectively utilizing
memory bandwidth in CUDA

– Its origin in DRAM burst

– Checking if a CUDA memory access is coalesced

– Techniques for improving memory coalescing in CUDA code

UNIMORE13

DRAM Burst – A System View

– Each address space is partitioned into burst sections

– Whenever a location is accessed, all other locations in the same
section are also delivered to the processor

– Basic example: a 16-byte address space, 4-byte burst sections

– In practice, we have at least 4GB address space, burst section
sizes of 128-bytes or more

13

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

UNIMORE14

Memory Coalescing

– When all threads of a warp execute a load instruction, if all accessed
locations fall into the same burst section, only one DRAM request
will be made and the access is fully coalesced.

14

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Coalesced Loads
T0 T1 T2 T3

Coalesced Loads

UNIMORE15

Un-coalesced Accesses

– When the accessed locations spread across burst section
boundaries:

– Coalescing fails

– Multiple DRAM requests are made

– The access is not fully coalesced.

– Some of the bytes accessed and transferred are not used by the
threads

15

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Un-coalesced Loads

T0 T1 T2 T3

Un-coalesced Loads

UNIMORE16

How to judge if an access is coalesced?

– Accesses in a warp are to consecutive locations if the index in an
array access is in the form of

– A[(expression with terms independent of threadIdx.x) + threadIdx.x];

16

UNIMORE17

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

linearized order in increasing address

A 2D C Array in Linear Memory Space

17

UNIMORE18

Two Access Patterns of Basic Matrix Multiplication

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

i is the loop counter in the inner product loop of the kernel code

A is m × n, B is n × k

Col = blockIdx.x*blockDim.x + threadIdx.x

H
E

IG
H

T

UNIMORE19

B accesses are coalesced

N

T0 T1 T2 T3

Load iteration 0
T0 T1 T2 T3

Load iteration 1

Access

direction in

kernel code

B0,2

B1,1

B0,1B0,0

B1,0

B0,3

B1,2 B1,3

B2,1B2,0 B2,2 B2,3

B3,1B3,0 B3,2 B3,3

B0,2B0,1B0,0 B0,3 B1,1B1,0 B1,2 B1,3 B2,1B2,0 B2,2 B2,3 B3,1B3,0 B3,2 B3,3

UNIMORE20

A Accesses are Not Coalesced

T0 T1 T2 T3

Load iteration 0

T0 T1 T2 T3

Load iteration 1

Access

direction in

kernel code

…

A0,2

A1,1

A0,1A0,0

A1,0

A0,3

A1,2 A1,3

A2,1A2,0 A2,2 A2,3

A3,1A3,0 A3,2 A3,3

A0,2A0,1A0,0 A0,3 A1,1A1,0 A1,2 A1,3 A2,1A2,0 A2,2 A2,3 A3,1A3,0 A3,2 A3,3

UNIMORE21

Loading an Input Tile

A

B

C

W
ID
T
H

Row

Col

n

m

n

k

k

m

int tx = threadIdx.x

int ty = threadIdx.y

Accessing tile 0 2D indexing:

A[Row][tx]

B[ty][Col]

Have each thread load an A element

and a B element at the same relative

position as its C element.

UNIMORE22

Corner Turning

d_M d_N

W
ID

T
H

WIDTH

d_M d_N

Original
Access
Pattern

Tiled
Access
Pattern

Copy into

shared
memory

Perform
multiplication

with shared memory
values

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

Accelerated Computing

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

