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Objective

– To learn that memory bandwidth is a first-order performance factor 
in a massively parallel processor

– DRAM bursts, banks, and channels

– All concepts are also applicable to modern multicore processors
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Global Memory (DRAM) Bandwidth

– Ideal

– Reality
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DRAM Core Array Organization
– Each DRAM core array has about 16M bits

– Each bit is stored in a tiny capacitor made of one transistor
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A very small (8x2-bit) DRAM Core Array
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DRAM Core Arrays are Slow

– Reading from a cell in the core array is a very slow process
– DDR: Core speed = ½ interface speed

– DDR2/GDDR3: Core speed = ¼ interface speed

– DDR3/GDDR4: Core speed = ⅛ interface speed

– … likely to be worse in the future
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DRAM Bursting

– For DDR{2,3} SDRAM cores clocked at 1/N speed of the interface:

– Load (N × interface width) of DRAM bits from the same row at once to an internal 
buffer, then transfer in N steps at interface speed

– DDR3/GDDR4: buffer width = 8X interface width
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DRAM Bursting Timing Example
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Modern DRAM systems are designed to always be accessed 

in burst mode. Burst bytes are transferred to the processor 

but discarded when accesses are not to sequential locations.
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Multiple DRAM Banks
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DRAM Bursting with Banking

Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time 
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GPU off-chip memory subsystem

– NVIDIA GTX280 GPU: 
– Peak global memory bandwidth = 141.7GB/s

– Global memory (GDDR3) interface @ 1.1GHz
– (Core speed @ 276Mhz)

– For a typical 64-bit interface, we can sustain only about 17.6 GB/s (Recall DDR - 2 transfers 
per clock)

– We need a lot more bandwidth (141.7 GB/s) – thus 8 memory channels
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Objective

– To learn that memory coalescing is important for effectively utilizing 
memory bandwidth in CUDA

– Its origin in DRAM burst

– Checking if a CUDA memory access is coalesced

– Techniques for improving memory coalescing in CUDA code
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DRAM Burst – A System View

– Each address space is partitioned into burst sections 

– Whenever a location is accessed, all other locations in the same 
section are also delivered to the processor 

– Basic example: a 16-byte address space, 4-byte burst sections

– In practice, we have at least 4GB address space,  burst section 
sizes of 128-bytes or more
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Memory Coalescing

– When all threads of a warp execute a load instruction, if all accessed 
locations fall into the same burst section, only one DRAM request 
will be made and the access is fully coalesced.
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Un-coalesced Accesses

– When the accessed locations spread across burst section 
boundaries:

– Coalescing fails

– Multiple DRAM requests are made

– The access is not fully coalesced.

– Some of the bytes accessed and transferred are not used by the 
threads
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How to judge if an access is coalesced?

– Accesses in a warp are to consecutive locations if the index in an 
array access is in the form of

– A[(expression with terms independent of threadIdx.x) + threadIdx.x];
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Two Access Patterns of Basic Matrix Multiplication 
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A[Row*n+i] B[i*k+Col]

i is the loop counter in the inner product loop of the kernel code

A is m × n, B is n × k 

Col = blockIdx.x*blockDim.x + threadIdx.x
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B accesses are coalesced
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A Accesses are Not Coalesced
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Loading an Input Tile
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int tx = threadIdx.x

int ty = threadIdx.y

Accessing tile 0 2D indexing:

A[Row][tx]

B[ty][Col]

Have each thread load an A element 

and a B element at the same relative 

position as its C element.
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Corner Turning
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