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Objective

– To understand how CUDA threads execute on SIMD Hardware
– Warp partitioning

– SIMD Hardware

– Control divergence
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Warps as Scheduling Units

– Each block is divided into 32-thread warps
– An implementation technique, not part of the CUDA programming 

model

– Warps are scheduling units in SM

– Threads in a warp execute in Single Instruction Multiple Data 
(SIMD) manner

– The number of threads in a warp may vary in future generations
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Warps in Multi-dimensional Thread Blocks

– The thread blocks are first linearized into 1D in row major order
– In x-dimension first, y-dimension next, and z-dimension last
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Figure 6.1: Placing 2D threads into linear order
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Blocks are partitioned after linearization

– Linearized thread blocks are partitioned 
– Thread indices within a warp are consecutive and increasing

– Warp 0 starts with Thread 0

– Partitioning scheme is consistent across devices
– Thus you can use this knowledge in control flow

– However, the exact size of warps may change from 
generation to generation

– DO NOT rely on any ordering within or between 
warps
– If there are any dependencies between threads, you must 

__syncthreads() to get correct results (more later).
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SMs are SIMD Processors

– Control unit for instruction fetch, decode, and control is shared 
among multiple processing units
– Control overhead is minimized (Module 1)
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SIMD Execution Among Threads in a Warp

– All threads in a warp must execute the same instruction 
at any point in time

– This works efficiently if all threads follow the same 
control flow path
– All if-then-else statements make the same decision

– All loops iterate the same number of times
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Control Divergence

– Control divergence occurs when threads in a warp take 
different control flow paths by making different control 
decisions 
– Some take the then-path and others take the else-path of an if-

statement

– Some threads take different number of loop iterations than others

– The execution of threads taking different paths are 
serialized in current GPUs
– The control paths taken by the threads in a warp are traversed one 

at a time until there is no more.

– During the execution of each path, all threads taking that path will 
be executed in parallel

– The number of different paths can be large when considering 
nested control flow statements
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Control Divergence Examples

– Divergence can arise when branch or loop 
condition is a function of thread indices

– Example kernel statement with divergence:
– if (threadIdx.x > 2) { }
– This creates two different control paths for threads in a block

– Decision granularity < warp size; threads 0, 1 and 2 follow 
different path than the rest of the threads in the first warp

– Example without divergence:
– If (blockIdx.x > 2) { }
– Decision granularity is a multiple of blocks size; all threads in 

any given warp follow the same path
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Example: Vector Addition Kernel

// Compute vector sum C = A + B

// Each thread performs one pair-wise addition

__global__

void vecAddKernel(float* A, float* B, float* C, 

int n)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i<n) C[i] = A[i] + B[i];

}
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Device Code
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Analysis for vector size of 1,000 elements

– Assume that block size is 256 threads
– 8 warps in each block

– All threads in Blocks 0, 1, and 2 are within valid range
– i values from 0 to 767

– There are 24 warps in these three blocks, none will have control divergence

– Most warps in Block 3 will not control divergence
– Threads in the warps 0-6 are all within valid range, thus no control divergence

– One warp in Block 3 will have control divergence
– Threads with i values 992-999  will all be within valid range

– Threads with i values of 1000-1023 will be outside valid range

– Effect of serialization on control divergence will be small
– 1 out of 32 warps has control divergence

– The impact on performance will likely be less than 3%
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Objective

– To learn to analyze the performance impact of control divergence
– Boundary condition checking

– Control divergence is data-dependent
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Performance Impact of Control Divergence

– Boundary condition checks are vital for complete functionality and 
robustness of parallel code
– The tiled matrix multiplication kernel has many boundary condition checks

– The concern is that these checks may cause significant performance degradation

– For example, see the tile loading code below:

if(Row < Width && t * TILE_WIDTH+tx < Width) {

ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];

} else {

ds_M[ty][tx] = 0.0;

}

if (p*TILE_WIDTH+ty < Width && Col < Width) {

ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];

} else {

ds_N[ty][tx] = 0.0;

}
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Two types of blocks in loading M Tiles

– 1. Blocks whose tiles are all within valid range until the last phase.

– 2. Blocks whose tiles are partially outside the valid range all the way
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Analysis of Control Divergence Impact

– Assume 16x16 tiles and thread blocks

– Each thread block has 8 warps (256/32)

– Assume square matrices of 100x100

– Each thread will go through 7 phases (ceiling of 100/16)

– There are 49 thread blocks (7 in each dimension)
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Control Divergence in Loading M Tiles

– Assume 16x16 tiles and thread blocks

– Each thread block has 8 warps (256/32)

– Assume square matrices of 100x100

– Each warp will go through 7 phases (ceiling of 100/16)

– There are 42 (6*7) Type 1 blocks, with a total of 336 (8*42) warps

– They all have 7 phases, so there are 2,352 (336*7) warp-phases

– The warps have control divergence only in their last phase

– 336 warp-phases have control divergence
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Control Divergence in Loading M Tiles (Type 2)

– Type 2: the 7 block assigned to load the bottom tiles, with a total of 
56 (8*7) warps

– They all have 7 phases, so there are 392 (56*7) warp-phases

– The first 2 warps in each Type 2 block will stay within the valid range 
until the last phase

– The 6 remaining warps stay outside the valid range

– So, only 14 (2*7) warp-phases have control divergence
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Overall Impact of Control Divergence

– Type 1 Blocks: 336 out of 2,352 warp-phases have control 
divergence

– Type 2 Blocks: 14 out of 392 warp-phases have control divergence

– The performance impact is expected to be less than 12% (350/2,944 
or (336+14)/(2352+14))
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Additional Comments

– The calculation of impact of control divergence in loading N tiles is 
somewhat different and is left as an exercise

– The estimated performance impact is data dependent.
– For larger matrices, the impact will be significantly smaller

– In general, the impact of control divergence for boundary condition 
checking for large input data sets should be insignificant
– One should not hesitate to use boundary checks to ensure full functionality

– The fact that a kernel is full of control flow constructs does not mean 
that there will be heavy occurrence of control divergence

– We will cover some algorithm patterns that naturally incur control 
divergence (such as parallel reduction)  in the Parallel Algorithm 
Patterns modules
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