GPU Teaching Kit

Accelerated Computing

i5 Ty
)
i ,

% UNIMORE

5 UNIVERSITA DEGLI STUDI DI
:ﬁ"‘?’ MODENA E REGGIO EMILIA
%

1175

Thread Execusion Efficiency

Warps and SIMD Hardware
Performance Impact of Control Divergence



Objective

— To understand how CUDA threads execute on SIMD Hardware
— Warp partitioning
— SIMD Hardware
— Control divergence



Warps as Scheduling Units

Block 1 Warps Block 2 Warps Block 3 Warps

— Each block is divided into 32-thread warps

— An implementation technique, not part of the CUDA programming
model

— Warps are scheduling units in SM

— Threads in a warp execute in Single Instruction Multiple Data
(SIMD) manner

— The number of threads in a warp may vary in future generations

1" tot1t2 . t31

L LKL




Warps in Multi-dim

ensional Thread Blocks

— The thread blocks are first linearized into 1D in row major order
— In x-dimension first, y-dimension next, and z-dimension last

TD:{J

TD:I TD:2 TD:E

Tl,O

T | T Tus logical 2-D

organization

T]_,z

Tl.,

linear order



Blocks are partitioned after linearization

— Linearized thread blocks are partitioned
— Thread indices within a warp are consecutive and increasing
— Warp 0 starts with Thread O

— Partitioning scheme is consistent across devices
— Thus you can use this knowledge in control flow

— However, the exact size of warps may change from
generation to generation

— DO NOT rely on any ordering within or between
warps

— If there are any dependencies between threads, you must
__syncthreads() to get correct results (more later).



SMs are SIMD Processors

— Control unit for instruction fetch, decode, and control is shared
among multiple processing units
— Control overhead is minimized (Module 1)

R Memory «— /O

12

Processing Unit

i

Shared — :
Register
Memory g_:) File
A
i — —
1 A
Control Unit
PC IR
Processor (SM)




SIMD Execution Among Threads in a Warp

— All threads in a warp must execute the same instruction
at any point in time

— This works efficiently if all threads follow the same
control flow path
— All if-then-else statements make the same decision
— All loops iterate the same number of times

unmore



Control Divergence

— Control divergence occurs when threads in a warp take
different control flow paths by making different control
decisions

— Some take the then-path and others take the else-path of an if-
statement

— Some threads take different number of loop iterations than others

— The execution of threads taking different paths are
serialized in current GPUs

— The control paths taken by the threads in a warp are traversed one
at a time until there is no more.

— During the execution of each path, all threads taking that path will
be executed in parallel

— The number of different paths can be large when considering
nested control flow statements



Control Divergence Examples

— Divergence can arise when branch or loop
condition is a function of thread indices

— Example kernel statement with divergence:

— if (threadldx.x > 2) { }
— This creates two different control paths for threads in a block

— Decision granularity < warp size; threads 0, 1 and 2 follow
different path than the rest of the threads in the first warp

— Example without divergence:

— If (blockldx.x > 2) { }

— Decision granularity is a multiple of blocks size; all threads in
any given warp follow the same path



Example: Vector Addition Kernel

Device Code

// Compute vector sum C = A + B
// Each thread performs one pair-wise addition

__global
void vecAddKernel (float* A, float* B, float* C,
int n)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
if(i<n) C[i] = A[i] + B[i];




Analysis for vector size of 1,000 elements

— Assume that block size is 256 threads
— 8 warps in each block

— All threads in Blocks 0, 1, and 2 are within valid range
— ivalues from 0 to 767
— There are 24 warps in these three blocks, none will have control divergence

— Most warps in Block 3 will not control divergence
— Threads in the warps 0-6 are all within valid range, thus no control divergence

— One warp in Block 3 will have control divergence
— Threads with i values 992-999 will all be within valid range
— Threads with i values of 1000-1023 will be outside valid range

— Effect of serialization on control divergence will be small

— 1 out of 32 warps has control divergence
— The impact on performance will likely be less than 3%

Anvpia / unwore [



Objective
— To learn to analyze the performance impact of control divergence

— Boundary condition checking
— Control divergence is data-dependent



Performance Impact of Control Divergence

— Boundary condition checks are vital for complete functionality and

robustness of parallel code
— The tiled matrix multiplication kernel has many boundary condition checks
— The concern is that these checks may cause significant performance degradation

— For example, see the tile loading code below:

if(Row < Width && t * TILE_WIDTH+tx < Width) {

ds_MIy[[TiX] = M[ROW ~ Width + p * TILE_WIDTH + iX],

} else {
ds_M|ty][tx] = 0.0;
}

if (o*TILE_WIDTH+ty < Width && Col < Width) {
ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];

} else {
ds_N[ty][tx] = 0.0;
}




Two types of blocks in loading M Tiles

— 1. Blocks whose tiles are all within valid range until the last phase.
— 2. Blocks whose tiles are partially outside the valid range all the way

Type 1
TILE_WIDTH
Type 2




Analysis of Control Divergence Impact

— Assume 16x16 tiles and thread blocks

— Each thread block has 8 warps (256/32)

— Assume square matrices of 100x100

— Each thread will go through 7 phases (ceiling of 100/16)

— There are 49 thread blocks (7 in each dimension)

Anvpia / unwore [



Control Divergence in Loading M Tiles

— Assume 16x16 tiles and thread blocks

— Each thread block has 8 warps (256/32)

— Assume square matrices of 100x100

— Each warp will go through 7 phases (ceiling of 100/16)

— There are 42 (6*7) Type 1 blocks, with a total of 336 (8*42) warps
— They all have 7 phases, so there are 2,352 (336*7) warp-phases
— The warps have control divergence only in their last phase

— 336 warp-phases have control divergence

Type 1

TILE_WIDTH




Control Divergence in Loading M Tiles (Type 2)

— Type 2: the 7 block assigned to load the bottom tiles, with a total of
56 (8*7) warps
— They all have 7 phases, so there are 392 (56*7) warp-phases

— The first 2 warps in each Type 2 block will stay within the valid range
until the last phase

— The 6 remaining warps stay outside the valid range
— So, only 14 (2*7) warp-phases have control divergence

Type 2
T T



Overall Impact of Control Divergence

— Type 1 Blocks: 336 out of 2,352 warp-phases have control
divergence

— Type 2 Blocks: 14 out of 392 warp-phases have control divergence
— The performance impact is expected to be less than 12% (350/2,944

or (336+14)/(2352+14))
TILE_WIDTH

Type 1

Type 2




Additional Comments

— The calculation of impact of control divergence in loading N tiles is
somewhat different and is left as an exercise

— The estimated performance impact is data dependent.
— For larger matrices, the impact will be significantly smaller

— In general, the impact of control divergence for boundary condition
checking for large input data sets should be insignificant
— One should not hesitate to use boundary checks to ensure full functionality

— The fact that a kernel is full of control flow constructs does not mean
that there will be heavy occurrence of control divergence

— We will cover some algorithm patterns that naturally incur control
divergence (such as parallel reduction) in the Parallel Algorithm
Patterns modules



GPU Teaching Kit

Accelerated Computing

oM MUTII\!
)
ée\ €y,

UNIMORE

UNIVERSITA DEGLI STUDI DI
MODENA E REGGIO EMILIA

qﬂs\TA.s S5,

&

(o)
o
!
2
»
&
2
&
&
<
175

The GPU Teaching Kit is licensed by NVIDIA and the University of lllinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.



http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

