
Kernel-Based SPMD Parallel Programming
Multidimensional Kernel Configuration
Color-to-Grayscale Image Processing Example
Image Blur Example
Thread Scheduling

CUDA Parallelism Model

Accelerated Computing

GPU Teaching Kit

UNIMORE2

Objective

– To learn the basic concepts involved in a simple CUDA kernel
function

– Declaration

– Built-in variables

– Thread index to data index mapping

2

UNIMORE3

Example: Vector Addition Kernel

// Compute vector sum C = A + B

// Each thread performs one pair-wise addition

__global__

void vecAddKernel(float* A, float* B, float* C, int n)

{

int i = threadIdx.x+blockDim.x*blockIdx.x;

if(i<n) C[i] = A[i] + B[i];

}

Device Code

UNIMORE4

Example: Vector Addition Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

// d_A, d_B, d_C allocations and copies omitted

// Run ceil(n/256.0) blocks of 256 threads each

vecAddKernel<<<ceil(n/256.0),256>>>(d_A, d_B, d_C, n);

}

Host Code

4

The ceiling function makes sure that there

are enough threads to cover all elements.

UNIMORE5

More on Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

dim3 DimGrid((n-1)/256 + 1, 1, 1);

dim3 DimBlock(256, 1, 1);

vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);

}

5

Host Code

This is an equivalent way to express the

ceiling function.

UNIMORE6

__host__

void vecAdd(…)

{

dim3 DimGrid(ceil(n/256.0),1,1);

dim3 DimBlock(256,1,1);

vecAddKernel<<<DimGrid,DimBlock>>>(d_A,d_B

,d_C,n);

}

Kernel execution in a nutshell

6

Grid
Blk 0 Blk N-1

• • •

GPU
M0

RAM

Mk• • •

__global__

void vecAddKernel(float *A,

float *B, float *C, int n)

{

int i = blockIdx.x * blockDim.x

+ threadIdx.x;

if(i<n) C[i] = A[i]+B[i];

}

UNIMORE7

More on CUDA Function Declarations

− __global__ defines a kernel function

− Each “__” consists of two underscore characters

− A kernel function must return void

− __device__ and __host__ can be used together

− __host__ is optional if used alone

7

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable from

the:

Executed on

the:

UNIMORE8

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code (PTX)

Device Just-in-Time Compiler

Heterogeneous Computing Platform with

CPUs, GPUs, etc.

Compiling A CUDA Program

UNIMORE9

Objective

– To understand multidimensional Grids
– Multi-dimensional block and thread indices

– Mapping block/thread indices to data indices

2

UNIMORE10

host device

Kernel 1

Grid 1
Block

(0, 0)

Block

(1, 1)

Block

(1, 0)

Block

(0, 1)

Grid 2

Block (1,0)

Thread

(0,0,0)Thread

(0,1,3)
Thread

(0,1,0)

Thread

(0,1,1)

Thread

(0,1,2)

Thread

(0,0,0)

Thread

(0,0,1)

Thread

(0,0,2)

Thread

(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

A Multi-Dimensional Grid Example

10

UNIMORE11

16×16 blocks

Processing a Picture with a 2D Grid

62×76 picture

UNIMORE12

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

Row*Width+Col = 2*4+1 = 9
M2M1M0 M3 M5M4 M6 M7 M9M8 M10 M11 M13M12 M14 M15

M

Row-Major Layout in C/C++

UNIMORE13

Source Code of a PictureKernel

__global__ void PictureKernel(float* d_Pin, float* d_Pout,

int height, int width)

{

// Calculate the row # of the d_Pin and d_Pout element

int Row = blockIdx.y*blockDim.y + threadIdx.y;

// Calculate the column # of the d_Pin and d_Pout element

int Col = blockIdx.x*blockDim.x + threadIdx.x;

// each thread computes one element of d_Pout if in range

if ((Row < height) && (Col < width)) {

d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];

}

}

Scale every pixel value by 2.0

UNIMORE14

Host Code for Launching PictureKernel

// assume that the picture is m × n,

// m pixels in y dimension and n pixels in x dimension

// input d_Pin has been allocated on and copied to device

// output d_Pout has been allocated on device

…

dim3 DimGrid((n-1)/16 + 1, (m-1)/16+1, 1);

dim3 DimBlock(16, 16, 1);

PictureKernel<<<DimGrid,DimBlock>>>(d_Pin, d_Pout, m, n);

…

UNIMORE15

Covering a 62×76 Picture with 16×16 Blocks

Not all threads in a Block will follow the same control flow path.

UNIMORE16

Objective

– To gain deeper understanding of multi-dimensional grid kernel
configurations through a real-world use case

2

UNIMORE17

RGB Color Image Representation

– Each pixel in an image is an RGB value

– The format of an image’s row is
(r g b) (r g b) … (r g b)

– RGB ranges are not distributed uniformly

– Many different color spaces, here we show the
constants to convert to AdbobeRGB color space

– The vertical axis (y value) and horizontal axis (x value) show
the fraction of the pixel intensity that should be allocated to G
and B. The remaining fraction (1-y–x) of the pixel intensity that
should be assigned to R

– The triangle contains all the representable colors in this color
space

UNIMORE18

RGB to Grayscale Conversion

A grayscale digital image is an image in which the value of
each pixel carries only intensity information.

UNIMORE19

Color Calculating Formula

– For each pixel (r g b) at (I, J) do:
grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

– This is just a dot product <[r,g,b],[0.21,0.71,0.07]> with the
constants being specific to input RGB space

0.21
0.71

0.07

UNIMORE20

RGB to Grayscale Conversion Code

#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

if (x < width && y < height) {
// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r = rgbImage[rgbOffset]; // red value for pixel
unsigned char g = rgbImage[rgbOffset + 2]; // green value for pixel
unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}

UNIMORE21

RGB to Grayscale Conversion Code

#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

if (x < width && y < height) {
// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r = rgbImage[rgbOffset]; // red value for pixel
unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel
unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}

UNIMORE22

RGB to Grayscale Conversion Code

#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

if (x < width && y < height) {
// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r = rgbImage[rgbOffset]; // red value for pixel
unsigned char g = rgbImage[rgbOffset + 2]; // green value for pixel
unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}

UNIMORE23

Objective

– To learn a 2D kernel with more complex computation and memory
access patterns

UNIMORE24

Image Blurring

UNIMORE25

Pixels

processed

by a

thread

block

Blurring Box

UNIMORE26

Image Blur as a 2D Kernel

__global__
void blurKernel(unsigned char * in, unsigned char * out, int w, int h)
{
int Col = blockIdx.x * blockDim.x + threadIdx.x;
int Row = blockIdx.y * blockDim.y + threadIdx.y;

if (Col < w && Row < h) {
... // Rest of our kernel

}
}

UNIMORE27

__global__
void blurKernel(unsigned char * in, unsigned char * out, int w, int h) {

int Col = blockIdx.x * blockDim.x + threadIdx.x;
int Row = blockIdx.y * blockDim.y + threadIdx.y;

if (Col < w && Row < h) {
int pixVal = 0;
int pixels = 0;

// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {

for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the accumulated total

}
}

}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

}
}

UNIMORE28

Objective

– To learn how a CUDA kernel utilizes hardware execution resources
– Assigning thread blocks to execution resources

– Capacity constrains of execution resources

– Zero-overhead thread scheduling

UNIMORE29

Transparent Scalability

– Each block can execute in any order relative to others.

– Hardware is free to assign blocks to any processor at any time

– A kernel scales to any number of parallel processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Thread grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
time

UNIMORE30

Example: Executing Thread Blocks

– Threads are assigned to Streaming
Multiprocessors (SM) in block granularity

– Up to 8 blocks to each SM as resource allows

– Fermi SM can take up to 1536 threads

– Could be 256 (threads/block) * 6 blocks

– Or 512 (threads/block) * 3 blocks, etc.

– SM maintains thread/block idx #s

– SM manages/schedules thread execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

SM

UNIMORE31

The Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg

File

PC IR

Processing Unit

UNIMORE32

The Von-Neumann Model with SIMD units

Memory

Control Unit

I/O

ALU
Reg

File

PC IR

Processing Unit

Single Instruction Multiple Data

(SIMD)

UNIMORE33

Warps as Scheduling Units

• Each Block is executed as 32-thread Warps

– An implementation decision, not part of the

CUDA programming model

– Warps are scheduling units in SM

– Threads in a warp execute in SIMD

– Future GPUs may have different number of

threads in each warp

UNIMORE34

Warp Example

• If 3 blocks are assigned to an SM and each block has 256 threads,
how many Warps are there in an SM?

– Each Block is divided into 256/32 = 8 Warps

– There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31
…Block 0 Warps Block 1 Warps

…
t0 t1 t2 … t31

…Block 2 Warps

Register File

L1 Shared Memory

UNIMORE35

Example: Thread Scheduling (Cont.)

– SM implements zero-overhead warp scheduling

– Warps whose next instruction has its operands ready for consumption are eligible
for execution

– Eligible Warps are selected for execution based on a prioritized scheduling policy

– All threads in a warp execute the same instruction when selected

UNIMORE36

Block Granularity Considerations

– For Matrix Multiplication using multiple blocks,
should I use 8X8, 16X16 or 32X32 blocks for Fermi?

– For 8X8, we have 64 threads per Block. Since each SM
can take up to 1536 threads, which translates to 24
Blocks. However, each SM can only take up to 8 Blocks,
only 512 threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each
SM can take up to 1536 threads, it can take up to 6
Blocks and achieve full capacity unless other resource
considerations overrule.

– For 32X32, we would have 1024 threads per Block. Only
one block can fit into an SM for Fermi. Using only 2/3 of
the thread capacity of an SM.

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

Accelerated Computing

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

