
© 2016 Università degli studi di Modena

Code profiling and analysis

Roberto Cavicchioli
roberto.cavicchioli@unimore.it

© 2016 Università degli studi di Modena

 Coverage or extent of parallelism in algorithm
 Remember Amdahl's Law?

 Granularity of partitioning among processors
 Communication cost and load balancing

 Locality of computation and communication
 Communication between processors or between processors and their

memories

Keys to parallel performance

Parallel Programming LM – 2016/17 2

© 2016 Università degli studi di Modena

Rollback: Amdahl's Law

Parallel Programming LM – 2016/17 3

teold : total exec time without the enhancement
tenew : total exec time with the enhancement
ts = (teold / tenew) : total speed-up
peold : (partial) exec time of the original component =1
penew : (partial) exec time of the enhanced component
ps = (peold / penew) : (partial) speed-up of the enhanced component
f : fraction of time in which the component is used

ts = teold / tenew = 1 / [(1 – f) + (f / ps)]

© 2016 Università degli studi di Modena

Communication Cost Model

Parallel Programming LM – 2016/17 4

© 2016 Università degli studi di Modena

Overlapping Communication with Computation

Parallel Programming LM – 2016/17 5

© 2016 Università degli studi di Modena

Limits in Pipelining Communication

Parallel Programming LM – 2016/17 6

 Computation to communication ratio limits
performance gains from pipelining

 Where else to look for performance?

© 2016 Università degli studi di Modena

Artifactual Communication

Parallel Programming LM – 2016/17 7

 Determined by program implementation
and interactions with the architecture

 Examples:
 Poor distribution of data across distributed

memories
 Unnecessarily fetching data that is not used
 Redundant data fetches

© 2016 Università degli studi di Modena

Lessons From Uniprocessors

Parallel Programming LM – 2016/17 8

In uniprocessors, CPU communicates with
memory

 Loads and stores are to uniprocessors
equivalent to get and put in distributed memory
multiprocessors

 How is communication overlap enhanced in
uniprocessors?
 Spatial locality
 Temporal locality

© 2016 Università degli studi di Modena

Spatial Locality

Parallel Programming LM – 2016/17 9

 CPU asks for data at address 1000

 Memory sends data at address 1000 … 1064

 Amount of data sent depends on architecture

parameters such as the cache block size

 Works well if CPU actually ends up using data

from 1001, 1002, …, 1064

 Otherwise wasted bandwidth and cache

capacity

© 2016 Università degli studi di Modena

Temporal Locality

Parallel Programming LM – 2016/17 10

 Main memory access is expensive
 Memory hierarchy adds small but fast memories

(caches) near the CPU
 Memories get bigger as distance from CPU

increases
 CPU asks for data at address 1000
 Memory hierarchy anticipates more accesses to

same address and stores a local copy
 Works well if CPU actually ends up using data

from 1000 over and over and over ...
 Otherwise wasted cache capacity

© 2016 Università degli studi di Modena

Reducing Artifactual Costs in
Distributed Memory Architectures

Parallel Programming LM – 2016/17 11

 Data is transferred in chunks to amortize

communication cost

 Spatial locality

 Computation should exhibit good spatial locality

characteristics

 Temporal locality

 Reorder computation to maximize use of data

fetched

© 2016 Università degli studi di Modena

Single Thread Performance

Parallel Programming LM – 2016/17 12

© 2016 Università degli studi di Modena

 Tasks mapped to execution units (threads)
 Threads run on individual processors (cores)

 Two keys for faster execution
 Load balance the work among the processors
 Make execution on each processor faster

Single Thread Performance

Parallel Programming LM – 2016/17 13

© 2016 Università degli studi di Modena

 Need some way of measuring
performance
 Coarse grained measurements

% gcc sample.c
% time a.out
2.312u 0.062s 0:02.50 94.8%
% gcc sample.c –O3
% time a.out
1.921u 0.093s 0:02.03 99.0%

 Did we learn something of what is
going on?

Parallel Programming LM – 2016/17 14

Understanding performance
#define N (1 << 23)
#define T (10)
#include <string.h>
double a[N],b[N];

void cleara(double a[N]) {
int i;
for (i = 0; i < N; i++) {
a[i] = 0;
}

}
int main() {

double s=0,s2=0; int i,j;
for (j = 0; j < T; j++) {

for (i = 0; i < N; i++) {
b[i] = 0;

}
cleara(a);
memset(a,0,sizeof(a));

//start record
for (i = 0; i < N; i++) {

s += a[i] * b[i];
s2 += a[i]*a[i] + b[i]*b[i];
}

}
//stop record

printf("s %f s2 %f\n",s,s2);
}

© 2016 Università degli studi di Modena

 Increasingly possible to get accurate measurements using performance
counters
 Special registers in the hardware to measure events

 Insert code to start, read, and stop counter
 Measure exactly what you want, anywhere you want
 Can measure communication and computation duration
 But requires manual changes
 Monitoring nested scopes is an issue
 Heisenberg effect: counters can perturb execution time

Measurements Using Counters

Parallel Programming LM – 2016/17 15

© 2016 Università degli studi di Modena

 Event-based profiling
 Interrupt execution when an event counter reaches a

threshold

 Time-based profiling
 Interrupt execution every t seconds

 Works without modifying your code
 Does not require that you know where problem might be
 Supports multiple languages and programming models
 Quite efficient for appropriate sampling frequencies

Dynamic Profiling

Parallel Programming LM – 2016/17 16

© 2016 Università degli studi di Modena

 Cycles (clock ticks)
 Pipeline stalls
 Cache hits
 Cache misses
 Number of instructions
 Number of loads
 Number of stores
 Number of floating point operations
 …

Counter Examples

Parallel Programming LM – 2016/17 17

© 2016 Università degli studi di Modena

 Processor utilization
 Cycles / Wall Clock Time

 Instructions per cycle
 Instructions / Cycles

 Instructions per memory operation
 Instructions / Loads + Stores

 Average number of instructions per load miss
 Instructions / L1 Load Misses

 Memory traffic
 Loads + Stores * Lk Cache Line Size

 Bandwidth consumed
 Loads + Stores * Lk Cache Line Size / Wall Clock Time

 Many others
 Cache miss rate
 Branch misprediction rate
 …

Useful Derived Measurements

Parallel Programming LM – 2016/17 18

© 2016 Università degli studi di Modena

 GNU gprof
 Widely available with UNIX/Linux distributions

 gcc -O2 -pg foo.c -o foo
 ./foo
 gprof foo

 perf tools https://perf.wiki.kernel.org/index.php/Tutorial
 Needs prior machine configuration

 perf
 Valgrind and its tools: http://valgrind.org/info/tools.html

 valgrind --tool=callgrind ./foo
 kcachegrind to visualize

Popular Runtime Profiling Tools

Parallel Programming LM – 2016/17 19

https://perf.wiki.kernel.org/index.php/Tutorial
http://valgrind.org/info/tools.html

© 2016 Università degli studi di Modena

Now let's try them

Parallel Programming LM – 2016/17 20

© 2016 Università degli studi di Modena

Instruction Locality

Parallel Programming LM – 2016/17 21

© 2016 Università degli studi di Modena

Instruction Locality

Parallel Programming LM – 2016/17 22

© 2016 Università degli studi di Modena

Cache Optimization

Parallel Programming LM – 2016/17 23

© 2016 Università degli studi di Modena

Cache Optimization

Parallel Programming LM – 2016/17 24

© 2016 Università degli studi di Modena

Cache Optimization

Parallel Programming LM – 2016/17 25

© 2016 Università degli studi di Modena

 Tune the parallelism first!
 Then tune performance for each individual processor

 Instruction level parallelism …
 Profiling requires lots of probing

 Optimize Memory
 It is much slower than processor
 Data locality is essential for performance
 Remember the model you are using:

 Hierarchical memory
 Communication

 May have to change everything!
 Algorithm, data structure, program structure

 Focus on the biggest impediment
 Amdahl...

Programming for performance

Parallel Programming LM – 2016/17 26

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26

