
© 2016 Università degli studi di Modena

Code profiling and analysis

Roberto Cavicchioli
roberto.cavicchioli@unimore.it

© 2016 Università degli studi di Modena

 Coverage or extent of parallelism in algorithm
 Remember Amdahl's Law?

 Granularity of partitioning among processors
 Communication cost and load balancing

 Locality of computation and communication
 Communication between processors or between processors and their

memories

Keys to parallel performance

Parallel Programming LM – 2016/17 2

© 2016 Università degli studi di Modena

Rollback: Amdahl's Law

Parallel Programming LM – 2016/17 3

teold : total exec time without the enhancement
tenew : total exec time with the enhancement
ts = (teold / tenew) : total speed-up
peold : (partial) exec time of the original component =1
penew : (partial) exec time of the enhanced component
ps = (peold / penew) : (partial) speed-up of the enhanced component
f : fraction of time in which the component is used

ts = teold / tenew = 1 / [(1 – f) + (f / ps)]

© 2016 Università degli studi di Modena

Communication Cost Model

Parallel Programming LM – 2016/17 4

© 2016 Università degli studi di Modena

Overlapping Communication with Computation

Parallel Programming LM – 2016/17 5

© 2016 Università degli studi di Modena

Limits in Pipelining Communication

Parallel Programming LM – 2016/17 6

 Computation to communication ratio limits
performance gains from pipelining

 Where else to look for performance?

© 2016 Università degli studi di Modena

Artifactual Communication

Parallel Programming LM – 2016/17 7

 Determined by program implementation
and interactions with the architecture

 Examples:
 Poor distribution of data across distributed

memories
 Unnecessarily fetching data that is not used
 Redundant data fetches

© 2016 Università degli studi di Modena

Lessons From Uniprocessors

Parallel Programming LM – 2016/17 8

In uniprocessors, CPU communicates with
memory


 Loads and stores are to uniprocessors
equivalent to get and put in distributed memory
multiprocessors



 How is communication overlap enhanced in
uniprocessors?
 Spatial locality
 Temporal locality

© 2016 Università degli studi di Modena

Spatial Locality

Parallel Programming LM – 2016/17 9

 CPU asks for data at address 1000

 Memory sends data at address 1000 … 1064

 Amount of data sent depends on architecture

parameters such as the cache block size

 Works well if CPU actually ends up using data

from 1001, 1002, …, 1064

 Otherwise wasted bandwidth and cache

capacity

© 2016 Università degli studi di Modena

Temporal Locality

Parallel Programming LM – 2016/17 10

 Main memory access is expensive
 Memory hierarchy adds small but fast memories

(caches) near the CPU
 Memories get bigger as distance from CPU

increases
 CPU asks for data at address 1000
 Memory hierarchy anticipates more accesses to

same address and stores a local copy
 Works well if CPU actually ends up using data

from 1000 over and over and over ...
 Otherwise wasted cache capacity

© 2016 Università degli studi di Modena

Reducing Artifactual Costs in
Distributed Memory Architectures

Parallel Programming LM – 2016/17 11

 Data is transferred in chunks to amortize

communication cost

 Spatial locality

 Computation should exhibit good spatial locality

characteristics

 Temporal locality

 Reorder computation to maximize use of data

fetched

© 2016 Università degli studi di Modena

Single Thread Performance

Parallel Programming LM – 2016/17 12

© 2016 Università degli studi di Modena

 Tasks mapped to execution units (threads)
 Threads run on individual processors (cores)

 Two keys for faster execution
 Load balance the work among the processors
 Make execution on each processor faster

Single Thread Performance

Parallel Programming LM – 2016/17 13

© 2016 Università degli studi di Modena

 Need some way of measuring
performance
 Coarse grained measurements

% gcc sample.c
% time a.out
2.312u 0.062s 0:02.50 94.8%
% gcc sample.c –O3
% time a.out
1.921u 0.093s 0:02.03 99.0%

 Did we learn something of what is
going on?

Parallel Programming LM – 2016/17 14

Understanding performance
#define N (1 << 23)
#define T (10)
#include <string.h>
double a[N],b[N];

void cleara(double a[N]) {
int i;
for (i = 0; i < N; i++) {
a[i] = 0;
}

}
int main() {

double s=0,s2=0; int i,j;
for (j = 0; j < T; j++) {

for (i = 0; i < N; i++) {
b[i] = 0;

}
cleara(a);
memset(a,0,sizeof(a));

//start record
for (i = 0; i < N; i++) {

s += a[i] * b[i];
s2 += a[i]*a[i] + b[i]*b[i];
}

}
//stop record

printf("s %f s2 %f\n",s,s2);
}

© 2016 Università degli studi di Modena

 Increasingly possible to get accurate measurements using performance
counters
 Special registers in the hardware to measure events

 Insert code to start, read, and stop counter
 Measure exactly what you want, anywhere you want
 Can measure communication and computation duration
 But requires manual changes
 Monitoring nested scopes is an issue
 Heisenberg effect: counters can perturb execution time

Measurements Using Counters

Parallel Programming LM – 2016/17 15

© 2016 Università degli studi di Modena

 Event-based profiling
 Interrupt execution when an event counter reaches a

threshold

 Time-based profiling
 Interrupt execution every t seconds

 Works without modifying your code
 Does not require that you know where problem might be
 Supports multiple languages and programming models
 Quite efficient for appropriate sampling frequencies

Dynamic Profiling

Parallel Programming LM – 2016/17 16

© 2016 Università degli studi di Modena

 Cycles (clock ticks)
 Pipeline stalls
 Cache hits
 Cache misses
 Number of instructions
 Number of loads
 Number of stores
 Number of floating point operations
 …

Counter Examples

Parallel Programming LM – 2016/17 17

© 2016 Università degli studi di Modena

 Processor utilization
 Cycles / Wall Clock Time

 Instructions per cycle
 Instructions / Cycles

 Instructions per memory operation
 Instructions / Loads + Stores

 Average number of instructions per load miss
 Instructions / L1 Load Misses

 Memory traffic
 Loads + Stores * Lk Cache Line Size

 Bandwidth consumed
 Loads + Stores * Lk Cache Line Size / Wall Clock Time

 Many others
 Cache miss rate
 Branch misprediction rate
 …

Useful Derived Measurements

Parallel Programming LM – 2016/17 18

© 2016 Università degli studi di Modena

 GNU gprof
 Widely available with UNIX/Linux distributions

 gcc -O2 -pg foo.c -o foo
 ./foo
 gprof foo

 perf tools https://perf.wiki.kernel.org/index.php/Tutorial
 Needs prior machine configuration

 perf
 Valgrind and its tools: http://valgrind.org/info/tools.html

 valgrind --tool=callgrind ./foo
 kcachegrind to visualize

Popular Runtime Profiling Tools

Parallel Programming LM – 2016/17 19

https://perf.wiki.kernel.org/index.php/Tutorial
http://valgrind.org/info/tools.html

© 2016 Università degli studi di Modena

Now let's try them

Parallel Programming LM – 2016/17 20

© 2016 Università degli studi di Modena

Instruction Locality

Parallel Programming LM – 2016/17 21

© 2016 Università degli studi di Modena

Instruction Locality

Parallel Programming LM – 2016/17 22

© 2016 Università degli studi di Modena

Cache Optimization

Parallel Programming LM – 2016/17 23

© 2016 Università degli studi di Modena

Cache Optimization

Parallel Programming LM – 2016/17 24

© 2016 Università degli studi di Modena

Cache Optimization

Parallel Programming LM – 2016/17 25

© 2016 Università degli studi di Modena

 Tune the parallelism first!
 Then tune performance for each individual processor

 Instruction level parallelism …
 Profiling requires lots of probing

 Optimize Memory
 It is much slower than processor
 Data locality is essential for performance
 Remember the model you are using:

 Hierarchical memory
 Communication

 May have to change everything!
 Algorithm, data structure, program structure

 Focus on the biggest impediment
 Amdahl...

Programming for performance

Parallel Programming LM – 2016/17 26

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26

