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 Coverage or extent of parallelism in algorithm
 Remember Amdahl's Law?

 Granularity of partitioning among processors 
 Communication cost and load balancing

 Locality of computation and communication
 Communication between processors or between processors and their 

memories

Keys to parallel performance
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Rollback: Amdahl's Law
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teold : total exec time without the enhancement
tenew : total exec time with the enhancement
ts = ( teold / tenew ) : total speed-up 
peold : (partial) exec time of the original component =1
penew : (partial) exec time of the enhanced component
ps = ( peold / penew ) : (partial) speed-up of the enhanced component
f : fraction of time in which the component is used

ts = teold / tenew = 1 / [( 1 – f ) + (f / ps)]
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Communication Cost Model
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Overlapping Communication with Computation
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Limits in Pipelining Communication
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 Computation to communication ratio limits 
performance gains from pipelining

  Where else to look for performance?
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Artifactual Communication
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 Determined by program implementation 
and interactions with the architecture

 Examples:
 Poor distribution of data across distributed 

memories
 Unnecessarily fetching data that is not used
 Redundant data fetches
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Lessons From Uniprocessors
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In uniprocessors, CPU communicates with 
memory


 Loads and stores are to uniprocessors 
equivalent to get and put in distributed memory 
multiprocessors



 How is communication overlap enhanced in 
uniprocessors?
 Spatial locality
 Temporal locality
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Spatial Locality
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 CPU asks for data at address 1000

 Memory sends data at address 1000 … 1064

 Amount of data sent depends on architecture 

parameters such as the cache block size

 Works well if CPU actually ends up using data 

from 1001, 1002, …, 1064

 Otherwise wasted bandwidth and cache 

capacity
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Temporal Locality

Parallel Programming LM – 2016/17 10

 Main memory access is expensive
 Memory hierarchy adds small but fast memories 

(caches) near the CPU
 Memories get bigger as distance from CPU 

increases
 CPU asks for data at address 1000
 Memory hierarchy anticipates more accesses to 

same address and stores a local copy
 Works well if CPU actually ends up using data 

from 1000 over and over and over ... 
 Otherwise wasted cache capacity
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Reducing Artifactual Costs in
Distributed Memory Architectures
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 Data is transferred in chunks to amortize 

communication cost

 Spatial locality

 Computation should exhibit good spatial locality 

characteristics

 Temporal locality

 Reorder computation to maximize use of data 

fetched
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Single Thread Performance
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 Tasks mapped to execution units (threads)
 Threads  run on individual processors (cores)

 Two keys for faster execution
 Load balance the work among the processors
 Make execution on each processor faster

Single Thread Performance
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 Need some way of measuring 
performance
 Coarse grained measurements

% gcc sample.c
% time a.out
2.312u 0.062s 0:02.50 94.8%
% gcc sample.c –O3
% time a.out
1.921u 0.093s 0:02.03 99.0%

 Did we learn something of what is 
going on?

Parallel Programming LM – 2016/17 14

Understanding performance
#define N (1 << 23)
#define T (10)
#include <string.h>
double a[N],b[N];

void cleara(double a[N]) {
int i;
for (i = 0; i < N; i++) {
a[i] = 0;
}

}
int main() {

double s=0,s2=0; int i,j;
for (j = 0; j < T; j++) {

for (i = 0; i < N; i++) {
b[i] = 0;

}
cleara(a);
memset(a,0,sizeof(a));

//start record
for (i = 0; i < N; i++) {

s += a[i] * b[i];
s2 += a[i]*a[i] + b[i]*b[i];
}

}
//stop record

printf("s %f s2 %f\n",s,s2);
}
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 Increasingly possible to get accurate measurements using performance 
counters
 Special registers in the hardware to measure events

 Insert code to start, read, and stop counter
 Measure exactly what you want, anywhere you want
 Can measure communication and computation duration
 But requires manual changes
 Monitoring nested scopes is an issue
 Heisenberg effect: counters can perturb execution time

Measurements Using Counters
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 Event-based profiling
 Interrupt execution when an event counter reaches a 

threshold

 Time-based profiling
 Interrupt execution every t seconds

 Works without modifying your code
 Does not require that you know where problem might be
 Supports multiple languages and programming models
 Quite efficient for appropriate sampling frequencies

Dynamic Profiling
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 Cycles (clock ticks)
 Pipeline stalls
 Cache hits
 Cache misses
 Number of instructions
 Number of loads
 Number of stores
 Number of floating point operations
 …

Counter Examples
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 Processor utilization
 Cycles / Wall Clock Time

 Instructions per cycle
 Instructions / Cycles

 Instructions per memory operation
 Instructions / Loads + Stores

 Average number of instructions per load miss
 Instructions / L1 Load Misses

 Memory traffic
 Loads + Stores * Lk Cache Line Size

 Bandwidth consumed
 Loads + Stores * Lk Cache Line Size / Wall Clock Time

 Many others
 Cache miss rate
 Branch misprediction rate
 …

Useful Derived Measurements
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 GNU gprof 
 Widely available with UNIX/Linux distributions

 gcc -O2 -pg foo.c -o foo
 ./foo
 gprof foo

 perf tools https://perf.wiki.kernel.org/index.php/Tutorial 
 Needs prior machine configuration

 perf 
 Valgrind and its tools: http://valgrind.org/info/tools.html 

 valgrind --tool=callgrind ./foo
 kcachegrind to visualize

Popular Runtime Profiling Tools
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https://perf.wiki.kernel.org/index.php/Tutorial
http://valgrind.org/info/tools.html
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Now let's try them
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Instruction Locality
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Instruction Locality
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Cache Optimization
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Cache Optimization
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Cache Optimization
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 Tune the parallelism first!
 Then tune performance for each individual processor

 Instruction level parallelism …
 Profiling requires lots of probing

 Optimize Memory
 It is much slower than processor
 Data locality is essential for performance
 Remember the model you are using:

 Hierarchical memory
 Communication

 May have to change everything!
 Algorithm, data structure, program structure

 Focus on the biggest impediment
 Amdahl...

Programming for performance
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