
POSIX Threads

Paolo Burgio

paolo.burgio@unimore.it

mailto:paolo.burgio@unimore.it

© 2016 Università degli studi di Modena

 Specifies an operating system interface similar to most UNIX systems

– It extends the C language with primitives that allows the specification of the

concurrency

 POSIX distinguishes between the terms process and thread

– "A process is an address space with one or more threads executing in that

address space"

– "A thread is a single flow of control within a process (a unit of execution)"

 Every process has at least one thread

– the “main()” (aka "master") thread; its termination ends the process

– All the threads share the same address space, and have a private stack

The POSIX IEEE standard

Parallel Programming LM – 2016/17 2

© 2016 Università degli studi di Modena

 The pthread primitives are usually implemented into a pthread library

 All the declarations of the primitives cited in these slides can be found
into sched.h, pthread.h and semaphore.h

– Use man to get on-line documentation

 When compiling under gcc & GNU/Linux, remember the
–lpthread option!

The PThread library

Parallel Programming LM – 2016/17 3

© 2016 Università degli studi di Modena

PThread creation, join, end

Parallel Programming LM – 2016/17 4

© 2016 Università degli studi di Modena

 A (P)thread is identified by a C function, called body:

void *my_pthread_fn(void *arg)

{

…

}

 A thread starts with the first instruction of its body

 The threads ends when the body function ends

– it's not the only way a thread can die

PThread body

Parallel Programming LM – 2016/17 5

© 2016 Università degli studi di Modena

 Thread can be created using the primitive

int pthread_create (pthread_t *ID,

pthread_attr_t *attr,

void *(*body)(void *),

void * arg

);

 pthread_t is the type that contains the thread ID

 pthread_attr_t is the type that contains the parameters of the

thread

 arg is the argument passed to the thread body when it starts

Parallel Programming LM – 2016/17 6

Thread creation

© 2016 Università degli studi di Modena

 Thread attributes specifies the characteristics of a thread

– Stack size and address

– Detach state (joinable or detached)

– Scheduling parameters (priority, …)

 Attributes must be initialized and destroyed

– int pthread_attr_init(pthread_attr_t *attr);

– int pthread_attr_destroy(pthread_attr_t *attr);

Thread attributes

Parallel Programming LM – 2016/17 7

© 2016 Università degli studi di Modena

 A thread can terminate itself calling

void pthread_exit(void *retval);

 When the thread body ends after the last “}”, pthread_exit() is

called implicitly

 Exception: when main() terminates, exit() is called implicitly

Thread termination

Parallel Programming LM – 2016/17 8

© 2016 Università degli studi di Modena

 Each thread has a unique ID

 The thread ID of the current thread can be obtained using

pthread_t pthread_self(void);

 Two thread IDs can be compared using

int pthread_equal(pthread_t thread1,

pthread_t thread2);

Thread IDs

Parallel Programming LM – 2016/17 9

© 2016 Università degli studi di Modena

 A thread can wait the termination of another thread using

int pthread_join (pthread_t th,

void **thread_return);

 It gets the return value of the thread or PTHREAD_CANCELED if the

thread has been killed

 By default, every thread must be joined

– The join frees all the internal resources

– Stack, registers, and so on

Joining a thread

Parallel Programming LM – 2016/17 10

© 2016 Università degli studi di Modena

 A thread which does not need to be joined has to be declared as

detached

 2 ways to have it:

– While creating (in father thread) using
pthread_attr_setdetachstate()

– The thread itself can become detached calling in its body
pthread_detach()

 Joining a detached thread returns an error

Joining a thread (2)

Parallel Programming LM – 2016/17 11

© 2016 Università degli studi di Modena

 Filename: ex_create.c

 The demo explains how to create a thread

– the main() thread creates another thread (called body())

– the body() thread checks the thread Ids using pthread_equal() and

then ends

– the main() thread joins the body() thread

 Credits to PJ

Example

Parallel Programming LM – 2016/17 12

Let's

code!

© 2016 Università degli studi di Modena Parallel Programming LM – 2016/17 13

Pthread cancellation

© 2016 Università degli studi di Modena

 A thread can be killed calling

int pthread_cancel(pthread_t thread);

 When a thread dies its data structures will be released

– By the join primitive if the thread is joinable

– Immediately if the thread is detached

– Why?

Killing a thread

Parallel Programming LM – 2016/17 14

© 2016 Università degli studi di Modena

 Specifies how to react to a kill request

 There are two different behaviors:

– deferred cancellation

when a kill request arrives to a thread, the thread does not die. The

thread will die only when it will execute a primitive that is a

cancellation point. This is the default behavior of a thread.

– asynchronous cancellation

when a kill request arrives to a thread, the thread dies. The

programmer must ensure that all the application data structures are

coherent.

PThread cancellation

Parallel Programming LM – 2016/17 15

© 2016 Università degli studi di Modena

 The user can set the cancellation state of a thread using:

int pthread_setcancelstate(int state,int *oldstate);

int pthread_setcanceltype(int type, int *oldtype);

 The user can protect some regions providing destructors to be

executed in case of cancellation

int pthread_cleanup_push(void (*routine)(void *),

void *arg);

int pthread_cleanup_pop(int execute);

Cancellation states and cleanups

Parallel Programming LM – 2016/17 16

© 2016 Università degli studi di Modena

 The cancellation points are primitives that can potentially block a thread

 When called, if there is a kill request pending the thread will die

– void pthread_testcancel(void);

– sem_wait, pthread_cond_wait, printf and all the I/O primitives are

cancellation points

– pthread_mutex_lock, is NOT a cancellation point

• Why?

 A complete list can be found into the POSIX Standard

Cancellation points

Parallel Programming LM – 2016/17 17

© 2016 Università degli studi di Modena

 The user must guarantee that when a thread is killed, the application

data remains coherent.

 The user can protect the application code using cleanup handlers

– A cleanup handler is an user function that cleans up the application data

– They are called when the thread ends and when it is killed

Cleanup handlers

Parallel Programming LM – 2016/17 18

© 2016 Università degli studi di Modena

void pthread_cleanup_push (void (*routine)(void *),

void *arg);

void pthread_cleanup_pop (int execute);

– They are pushed and popped as in a stack

– If execute!=0 the cleanup handler is called when popped

– Ihe cleanup handlers are called in LIFO order

Cleanup handlers (2)

Parallel Programming LM – 2016/17 19

© 2016 Università degli studi di Modena

 Filename: ex_cancellation.c

 Highlights the behavior of:

– Asynchronous cancellation

– Deferred cancellation

 Explains the cleanup handlers usage

Example

Parallel Programming LM – 2016/17 21

Let's

code!

© 2016 Università degli studi di Modena Parallel Programming LM – 2016/17 22

POSIX semaphores

© 2016 Università degli studi di Modena

 A semaphore is a counter managed with a set of primitives

 It is used for

– Synchronization

– Mutual exclusion

 POSIX Semaphores can be

– Unnamed (local to a process)

– Named (shared between processed through a file descriptor)

Semaphores

Parallel Programming LM – 2016/17 23

© 2016 Università degli studi di Modena

 Mainly used with multithread applications

 Operations permitted:

– initialization /destruction

– blocking wait / nonblocking wait

• counter decrement

– post

• counter increment

– counter reading

• simply returns the counter

Unnamed semaphores

Parallel Programming LM – 2016/17 24

© 2016 Università degli studi di Modena

 The sem_t type contains all the semaphore data structures

int sem_init(sem_t *sem, int pshared, unsigned int

value);

– pshared is 0 if sem is not shared between processes

int sem_destroy(sem_t *sem)

– It destroys the sem semaphore

Initializing a semaphore

Parallel Programming LM – 2016/17 25

© 2016 Università degli studi di Modena

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

 Under the hood..

 If the counter is greater than 0 the thread does not block

– sem_trywait never blocks

 sem_wait is a cancellation point

Semaphore waits

Parallel Programming LM – 2016/17 26

© 2016 Università degli studi di Modena

int sem_post(sem_t *sem);

– It increments the semaphore counter

– It unblocks a waiting thread

int sem_getvalue(sem_t *sem,int *val);

– It simply returns the semaphore counter

Other semaphore primitives

Parallel Programming LM – 2016/17 27

© 2016 Università degli studi di Modena

 Filename: ex_sem.c

 In this example, semaphores are used to implement mutual exclusion

in the output of a character in the console.

Example

Parallel Programming LM – 2016/17 28

Let's

code!

© 2016 Università degli studi di Modena Parallel Programming LM – 2016/17 29

PThread mutexes

© 2016 Università degli studi di Modena

 Likea binary semaphore used for mutual exclusion

– But.. a mutex can be unlocked only by the thread that locked it

 Mutexes also support some RT protocols

– Priority inheritance

– Priority ceiling

– They are not implemented under a lot of UNIX OS

 Out of scope for this course

What is a POSIX mutex?

Parallel Programming LM – 2016/17 30

© 2016 Università degli studi di Modena

 Mutex attributes are used to initialize a mutex

int pthread_mutexattr_init (pthread_mutexattr_t *attr);

int pthread_mutexattr_destroy (pthread_mutexattr_t *attr);

 Initialization and destruction of a mutex attribute

Mutex attributes

Parallel Programming LM – 2016/17 31

© 2016 Università degli studi di Modena

 Initialize a mutex with a given mutex attribute

int pthread_mutex_init (pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

 Destroys a mutex

int pthread_mutex_destroy (pthread_mutex_t *mutex);

Mutex initialization

Parallel Programming LM – 2016/17 32

© 2016 Università degli studi di Modena

 This primitives implement the blocking lock, the non-blocking lock and

the unlock of a mutex

 The mutex lock is NOT a cancellation point

int pthread_mutex_lock(pthread_mutex_t *m);

int pthread_mutex_trylock(pthread_mutex_t *m);

int pthread_mutex_unlock(pthread_mutex_t *m);

Mutex lock and unlock

Parallel Programming LM – 2016/17 33

© 2016 Università degli studi di Modena

 Filename: ex_mutex.c

 This is prev. example written using mutexes instead of semaphores.

Example

Parallel Programming LM – 2016/17 34

Let's

code!

© 2016 Università degli studi di Modena Parallel Programming LM – 2016/17 35

pthread condition variables

© 2016 Università degli studi di Modena

 Used to enforce synchronization between threads

– A thread into a mutex critical section can wait on a condition variable

– When waiting, the mutex is automatically released and locked again at

wake up

– The synchronization point have to be checked into a loop!

What is a POSIX condition variable?

Parallel Programming LM – 2016/17 36

© 2016 Università degli studi di Modena

 Attributes are used to initialize a condition variable

int pthread_condattr_init (pthread_condattr_t *attr);

int pthread_condattr_destroy (pthread_condattr_t *attr);

 These functions initialize and destroy a condition variable

Condition variable attribute

Parallel Programming LM – 2016/17 37

© 2016 Università degli studi di Modena

 In order to be used, a condition variable must be initialized

int pthread_cond_init (pthread_cond_t *cond,

const pthread_condattr_t *attr)

 …and destroyed when it is no more needed

int pthread_cond_destroy(pthread_cond_t *cond)

Initializing and destroying a condition variable

Parallel Programming LM – 2016/17 38

© 2016 Università degli studi di Modena

int pthread_cond_wait (pthread_cond_t *cond,

pthread_mutex_t *mutex);

 Every condition variable is implicitly linked to a mutex

– given a condition variable, the mutex parameter must always be the same

 The condition wait must always be called into a loop protected by a

cleanup handler!!!

Waiting for a condition

Parallel Programming LM – 2016/17 39

© 2016 Università degli studi di Modena

 Mutexes are not cancellation points

 The condition wait is a cancellation point

 When a thread is killed while blocked on a condition variable, the mutex

is locked again before dying

– The mutex is left locked, and no thread can use it anymore!

– We must protect the thread from a cancellation

– A cleanup function that releases the mutex

Cancellation and mutexes

Parallel Programming LM – 2016/17 40

© 2016 Università degli studi di Modena

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

 These functions wakes up at least one (signal) or all (broadcast) the

thread blocked on the condition variable

– Nothing happens if no thread is blocked on the condition variable

 The thread should lock the associated mutex when calling these

functions

Signaling a condition

Parallel Programming LM – 2016/17 41

© 2016 Università degli studi di Modena

 Filename: ex_cond.c

 This is prev. examples written using simulated semaphores obtained

using mutexes and condition variables

 A simulated semaphore is composed by a counter, a mutex and a

condition variable

 The functions lock the mutex to work with the counter and use the

condition variable to block

Example

Parallel Programming LM – 2016/17 42

Let's

code!

