
Synchronization 



Terminology 

 Threads 

 Processes (or tasks) 
 Independent 

 Considerable state info 

 Separate address space 

 Resources 
 Memory, file handles, 

 sockets, device handles  

 Owned by processes 



Threads and processes 
 Thread of a same process share the same 

resources 

 Processes can share resources only through 
explicit methods 

 The only resources exclusively owned by a 
thread are the thread stack, register status 
and thread-local storage (if any) 



Scheduling 

 A scheduler is responsible to allocate tasks 
and threads to the available computing 
resources 

 Various kind of scheduling algorithms 
 Best-effort  minimize makespan 

 Real-Time  meet deadlines 

 … other metrics to minimize 

 Preemption and context changes 

 Access to shared resources 



Multithreading 
 Classic multithreading on single processor 

systems required Time Division Multiplexing 
(TDM) 

 Time driven 

 Event driven 

 Multiprocessors  different threads and 

processes can run on different CPUs 

 Multithreading is easier (“native”) on 

multicore platforms 

 But scheduling requires more attention 



Multithreading issues 

 Race conditions 

 Starvation, priority inversion, deadlock, 
livelock 

 Mamihlapinatapai 

 Synchronization (mutex, lock) 

 Atomic execution (semaphores) 

 Communication: 

 shared-memory (requires locking) 

 message-passing (slower but easier) 



Different kinds of Parallelisms 

 Instruction Level Parallelism (ILP) 

 Data Level Parallelism (DLP) 

 Thread Level Parallelism (TLP) 



Instruction Level Parallelism (ILP) 
 Execute multiple instruction per clock cycle 

 Each functional unit on a core is an execution 
resource within a single CPU:  

 Arithmetic Logic Unit (ALU) 

 Floating Point Unit (FPU) 

 bit shifter, multiplier, etc. 

 Need to solve data dependencies 



Data dependency 

 Consider the sequential code: 

1. e = a + b  

2. f = c + d  

3. g = e * f  

 Operation 3. depends on the results of 
operations 1. and 2. 

 Cannot execute 3. before 1. and 2. are 
completed 



How to “parallelize” software? 

 Parallelism can be extracted from ordinary 
programs 

 At run-time (by complex specific HW)  

 At compile-time (simplifying CPU design and 
improving run-time performances) 

 Degree of ILP is application dependent 



ILP: superscalar architectures 
 Data dependency check in HW 

 Complex mechanisms 

 power, die-space and time consuming  

 Problematic when  

 code difficult to predict 

 Intructions have many interdependencies 



Superscalar pipelining 

(5x) stage pipelining 
(2x) Superscalar execution 



ILP optimizations 

 Instruction pipelining 

 Superscalar execution 

 Out-of-order execution 
 deferred memory accesses 

 combined load and store 

 Speculative execution  
 branch prediction,  

 speculative load 

 … 



Processor front and back end 
 Intel describes its processors having 

 “in-order front end” 

 “out-of-order execution engine” 



ILP: compile-time techniques 

 Compiler decides which operations can run in parallel 

 Removes the complexity of instruction scheduling 
from HW to SW 

 New instruction sets that explicitly encode multiple 
independent operations per instruction 

 Very Long Instruction Word (VLIW): one instruction encodes 
multiple operations (one for each execution unit) 

 Explicitly Parallel Instruction Computing (EPIC): adds 
features to VLIW  (cache prefetching instructions, ...) 



Data Level Parallelism (DLP) 
 Higher parallelism than superscalar architecture 

 SIMD instructions (Single Instruction, Multiple Data) 
 Intel’s MMX, SSE, SSE2, SSE3, SSE3, SSSE3, SSE4, AVX 

 AMD’s 3DNow!, SSE5 

 ARM’s NEON, IBM’s AltiVec and SPE, etc. 

 Graphic cards (GPU) 

 Cell Processor’s SPU 

 Useful when the same operation has to be applied to 
a large set of data (i.e., multimedia, graphic 
operations on pixels, etc.) 

 Multiple data are read and/or modified at the same 
same 



Thread Level Parallelism (TLP) 

 Higher level parallelism than ILP 

 Different kinds of TLP 

 Superthreading 

 Hyperthreading or Symultaneous MultiThreading 
(SMT) 

 Needs superscalar processor 

 Chip-level MultiProcessing (CMP) 

 Needs multicore architecture 

 Combinations of the above solutions 



Superthreading 

 Temporal Multithreading (fine- or coarse-
grained)  when processor idle, execute 

instruction of another thread 

 Makes better use of the computing resources 
when a thread is blocked  

 Requires adequate hardware support to 
minimize context change overhead 

 



Hyperthreading 

 Simultaneous MultiThreading (SMT) 

 Introduced in late 90s: Intel’s Pentium 4 

 Execute instructions from multiple threads 
simultaneously  needs superscalar support 

 Energy inefficient 

 Increases cache thrashing by 42%, whereas dual 
core results in a 37% decrease 



4 running programs 

Only the red program  
is executing 

Up to 4 instr/clock cycle 

7 functional units 

Pipeline bubbles 

Single-threaded CPU 



Super-threading (time-slice 
multithreading) 

Multithreaded processor: 
able to handle more than  

one thread at a time 

All instructions in a pipeline 
stage must come from  

the same thread 

Interleaved execution of 
different threads (helps 

masking memory latency) 



Hyper-threading (Simultaneous 
MultiThreading) 

Instructions in a pipeline 
stage may come from  

different threads 

Interleaved execution of 
different threads (helps 

masking memory latency) 



Hyper-threading (SMT) 

 From OS perspective: many “logical” 

processors 

 Average ILP for a thread = 2.5 instr/cycle  

 Pentium 4 issues at most 3 instr/cycle to the 
execution core 

 Hyperthreaded processor can exploit 
parallelism beyond a single thread ILP 



But.. 

 SMT can be worse than non-SMT approaches 

 A thread monopolizing an execution unit for many 
consecutive pipeline stages can stall the available 
functional units (that could have been used by 
other threads) 

 Cache thrashing problem 

 Different logical processor can execute two 
threads accessing completely different memory 
areas 



Not a problem for Multicores 

 A smart SMT-aware OS running on a 
multicore would schedule two different tasks 
on different processors  resource 

contention is minimized 



Summary 

 Out-of-order execution problems on multicore 
platforms 

 Data dependencies 

 Race conditions 

 Memory barriers 

 Locking mechanisms 

 Spinlocks, semaphores, mutexes, RCU 



Introduction: execution ordering 

 A processor can execute instructions in any 
order (or in parallel), provided it maintains 
program causality with respect to itself 

 The compiler may reorder instructions in 
many ways, provided causality maintainance 

 Some CPUs are more constrained than others 

 E.g., i386, x86_64, UltraSPARC are more 
constrained than PowerPC, Alpha, etc. 

 Linux assumes the DEC Alpha execution ordering 
 the most relaxed one 



Out-of-order execution 

 Loads are more likely to need to be 
completed immediately 

 Stores are often deferred 

 Loads may be done speculatively, leading to 
discarded results 

 Order of memory accesses may be 
rearranged to better use buses and caches 

 Multiple loads and stores can be parallelized 



Optimizations 

 CPU or Compiler optimizations: overlapping 
instructions may be replaced 

 E.g., two consecutive loads to the same 
value/register 

 

 

 A load operation may be performed entirely inside 
the CPU 

1) A = V;  
2) A = W; 

1) *P = A; 
2) B = *P; 

A = W; 

1) *P = A; 
2) B = A; 



Cache coherency is not enough 

 While the caches are expected to be 

coherent, there's no guarantee that that 
coherency will be ordered  

 Whilst changes made on one CPU will 

eventually become visible on all CPUs, there's 
no guarantee that they will become apparent 
in the same order on those other CPUs 



Causality maintanance 

 If an instruction in the stream depends on an 
earlier instruction, then that earlier instruction 
must be “sufficiently complete” before the 

later instruction may proceed 

 Need to analyse the dependencies between 
operations 



Dependencies 

 A “dependency” is a situation in which an 

instruction refers to the data of a preceding 
instruction 

 Data dependencies 

 Read after Write 

 Write after Read 

 Write after Write 

 Control dependencies 



Read after Write 

 True (or flow) dependence: 

 an instruction depends on the result of a previous 
instruction 

 Example: 

1) A = 3;  
2) B = A + 1; 

A is modified by the first 
instruction and used in the 

second one 

It is not possible to use 
instruction level parallelism 



Write after Read 

 Antidependence: 

 an instruction requires a value that is updated by 
a later instruction 

 Example: 

1) B = A + 1;  
2) A = 3; 

A is modified by the second 
instruction and used by the 

first one 

It is not possible to use 
instruction level parallelism 



Write after Write 

 Output dependence: 

 two instructions modify the same resource 

 Example: 

1) A = 4; 
2) A = 5; 

A is modified by both 
instructions 

It is not possible to use 
instruction level parallelism 



Other dependencies 

 Read after Read a.k.a Input dependency 

 two instructions read the same resource 

 Control dependency 

 instruction execution depends on a previous 
instruction  e.g., conditional statements 

1) B = A + 1; 
2) C = A + 2; 

A is read by both instructions 

ILP is possible!  

if (x == true) 
A = 5; 

“A = 5” executed only if x is 

true in the previous instruction 



Considerations on dependencies 

 No need to consider dependencies when a strict 
sequential execution model is used 

 Otherwise, dependence analysis is needed for 

 CPU exploiting instruction level parallelism 

 out-of-order execution 

 parallelizing compiler 

 Need to enforce execution-order constraints to limit 
the ILP of a system 

 Usually automatically solved by compiler/HW 

 Concerns the behavior of a single thread 



More than dependencies... 

 When more threads are concurrently executed  
additional “dependency” problems 

 Instructions from different tasks/threads may need to 
access the same global resources 

 Problems similar to dependency problems, but more 
difficult to detect/solve 

 Explicit programmer intervention is needed 

 Need to synchronize the accesses to shared 
resources 



Synchronization mechanisms 

 Process synchronization 
 Barrier 

 Lock/semaphore 

 Critical sections 

 Thread join 

 Mutex 

 Non-blocking synchronization 

 Data synchronization 
 Keep multiple copies of a set of data coherent 

with one another 

 E.g., cache coherency, cluster file systems, RAID, 
etc. 



Process synchronization problems 

 Race conditions  

 Deadlock 

 Livelock 

 Starvation 

 Lack of fairness 



Race conditions 

 More tasks read/modify the same global 
variable 

 “Race” for which task modifies the global 

value first 

 Output depends on the particular sequence of 
task operations 

 Non-deterministic behavior 



Race conditions: example 1 

global int A = 0 
 
task T1 () 
 A = A + 1 
 print A 
end task 
 
task T2 () 
 A = A + 1 
 print A 
end task 

 Two concurrent tasks T1 and 
T2 are activated 

 Both tasks modify the same 
global variable A 

 Expected behavior: 

 T1 reads 0 

 T1 increments A to 1 

 T1 prints 1 

 T2 reads 1 

 T2 increments A to 2 

 T2 prints 2 

 Expected final output = 2 



Race conditions: example 1 

global int A = 0 
 
task T1 () 
 A = A + 1 
 print A 
end task 
 
task T2 () 
 A = A + 1 
 print A 
end task 

 Problem if operation 
“A=A+1” is not performed 

atomically 

 Possible behavior: 

 T1 reads 0 

 T2 reads 0 

 T1 increments A to 1 

 T2 increments A to 1 

 T1 prints 1 

 T2 prints 1 

 Final output = 1 !!! 



Race conditions: example 2 

A = 3;  
B = 4; 

x = A; 
y = B; 

Two global variables 
{ A = 1; B = 2 } 

CPU1 CPU2 

 n! = 24 different combinations for memory 
accesses 

 4 different outputs:  

 (x,y) = (1,2); (1,4); (3,2); (3,4) 

with out-of-
order execution 



Race conditions: example 3 

B = 4; 
P = &B; 

Q = P; 
D = *Q; 

Five global variables 
{ A = 1, B = 2, C = 3, P = &A, Q = &C } 

CPU1 CPU2 

with out-of-
order execution 

NB: Data dependency  Q is 

modified in the first instruction 
and used in the second one 



Race conditions: example 3 

B = 4; 
P = &B; 

Q = P; 
D = *Q; 

Five global variables 
{ A = 1, B = 2, C = 3, P = &A, Q = &C } 

CPU1 CPU2 

with out-of-
order execution 

 Partial order enforcement by CPU2  only 12 

different combinations for memory accesses and 
three different outputs:  

 (Q=P,D) = (&A,1); (&B,2); (&B,4) 

 D will never receive the value in C 



Race conditions on devices 

 Some devices present their control interfaces 
as collections of memory locations 

 The order in which control registers are 

accessed may be crucial 

 E.g.: Ethernet card with internal register set 
accessed through address (A) and data (D) 
port registers 

A = 5; 
x = *D; 

To read internal register #5: 



Race conditions on devices 

 Out-of-order execution may cause second 
instruction be executed before the first one 
 malfunction! 

 Since there is no explicit data dependency, 
these problems are difficult to detect 

A = 5; 
x = *D; 

Read register #5: 



Things that can be assumed 

 Dependent memory access on a given CPU 
are always executed in order 

Q = P; 
D = *Q; 

 Overlapping load and stores within a CPU 
maintain functional dependencies 

*P = A; 
B = *P; 

A = *P; 
*P = B; 

or 



...and that cannot be assumed 

 Order of execution of independent load and 
stores A = *P; 

B = *Q; 
*R = C; 

 Order of execution of overlapping load and 
stores (preserving functional dependencies) 

1) A = *P; 
2) B = *(P + 4); 

1) *P = A; 
2) B = *P; or 

may be: 1  2 
    2  1  

    1 & 2 

may be:  1  2 

     1 & 2 (*P=B=A) 



Memory barriers (membar) 

 Class of instructions to enforce an order on 
memory operations 

 Low-level machine code operating on shared 
memory 

 Ensures that all operations preceding a 
membar are executed before all operations 
following the barrier 



Membar: example 

 Two CPUs, each one 
running a task using 
global variables a and b 

 Expected behavior: 

 CPU1 spins until a 
becomes ≠ 0 

 Then prints the b value 
stored by CPU2 

 Expected output: 33 

load eax, 0 
 
while (eax == 0)  
 load eax, [a] 
 
print [b] 

store 33, [b]  
store 1, [a] 

CPU 1: 

CPU 2: 



but... 

 When CPU2’s 
operations may be 
executed out-of-order: 

 a may be updated 
before b 

 CPU1 prints a 
meaningless value 

 Not acceptable! 

load eax, 0 
 
while (eax == 0)  
 load eax, [a] 
 
print [b] 

store 33, [b]  
store 1, [a] 

CPU 1: 

CPU 2: 



Solution: memory barrier 

 Use a memory barrier 
before CPU2’s second 
instruction 

 “store 33, [b]” will be 
always executed before 
“store 1, [a]” 

 Final output: 33 

load eax, 0 
 
while (eax == 0)  
 load eax, [a] 
 
print [b] 

store 33, [b]  
membar 
store 1, [a] 

CPU 1: 

CPU 2: 



Why/when using membars? 

 Needed when out-of-order execution or 
concurrent programming is used 

 Many tricks to improve performances 
 reordering 

 deferral and combination of memory operations; 

 speculative loads and branch prediction 

 various types of caching 

 Memory barriers allow overriding such tricks 

 Instruct the compiler and the CPU to 
restrict the order 



Varieties of memory barriers 

1. Write (or store) memory barriers 

2. Data dependency barriers 

3. Read (or load) memory barriers 

4. General memory barriers 

5. Implicit varieties: 

 LOCK operations 

 UNLOCK operations 



Write (or store) memory barrier 

 All STORE operations before the barrier will 
appear (to other system components) to 
happen before all STORE operations after the 
barrier 

 No effect on load operations 

 



Wr_membar: example 

 

 

A = 4; 
Wr_membar; 
P = &A; 

Later loads of *P (by the 
same processor) will obtain 
the updated value = 4 

No data dependency:  
later load operations referencing 
*P may obtain old values ≠ 4 

A = 4; 
P = &A; 

 To enforce partial order between both 
operations  insert a Wr_membar: 



However.. 

 Other processors can see the update of A 
after the update of P, due to caching: 

A = 4; 
Wr_membar; 
P = &A; 

L1 Cache 

Q = P; 
D = *Q; 

L1 Cache 

Main memory 

CPU2 CPU1 

{ A = 1, B = 2, C = 3, P = &B, Q = &C } 

A = 1 P = &B 

A = 4 

P = &A 



L1 Cache L1 Cache 

However.. 

 Other processors can see the update of A 
after the update of P, due to caching: 

A = 4; 
Wr_membar; 
P = &A; 

Q = P; 
D = *Q; 

Main memory 

CPU2 CPU1 

{ A = 1, B = 2, C = 3, P = &B, Q = &C } 

A = 4 P = &A 

= &A = 1 

P = &A 

A = 1 

Busy 

Inconsistency!!! 
Q = &A 
D = 1 



Solution: 

 Delay the read of *Q until its value has been 
updated in memory 

 The process running on CPU2 needs to 
synchronize with the write barrier on CPU1 

 Make sure that the target (*Q) of the second 
load (D=load *Q) is updated, before the 
address (Q) obtained by the first load 
(Q=load P) is accessed 



Data dependency barrier 

 Enforce a partial ordering on interdependent 
load operations 

 Does not have any effect on 

 stores 

 independent or overlapping loads 

 Weaker form of read memory barrier 



L1 Cache L1 Cache 

Example with DD_bar 

 CPU2 cache is forced to commit its coherency 
queue before processing further requests 

A = 4; 
Wr_membar; 
P = &A; 

Q = P; 
DD_bar; 
D = *Q; 

Main memory 

CPU2 CPU1 

{ A = 1, B = 2, C = 3, P = &B, Q = &C } 

A = 4 P = &A 

= &A = 4 

P = &A 

A = 1 

Busy 

A = 4 

Correct!!! 
Q = &A 
D = 4 



When using DD barriers? 

 Two or more consecutive loads with later 
loads depending on the result of previous 
ones 

 Typical situations: 
 the first load retrieves the address to which the 

second load will be directed 

 the first load retrieves a number which is then 
used to calculate the index for an array  

 A data dependency barrier would be required 
to make sure that the target of the second 
load is updated before the address obtained 
by the first load is accessed 



More in detail.. 

 Definition from Linux kernel manual 

 “A data dependency barrier issued by the CPU 
under consideration guarantees that for any load 
preceding it, if that load touches one of a 
sequence of stores from another CPU, then by the 
time the barrier completes, the effects of all the 
stores prior to that touched by the load will be 
perceptible to any loads issued after the data 
dependency barrier”. 



Let’s try to understand.. 

 CPUs in the system can be viewed as committing 
sequences of stores to memory, that other CPU can 
then perceive 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = 3; 
STORE D = 4; 
STORE E = 5; 

L1 Cache 

… 

L1 Cache 

Main memory 

CPUx CPU1 

… 

L1 Cache 

CPU2 

… 



Sequence of memory ops 

CPU1 

B=2 

ti
m

e
lin

e
 

A=1 

C=3 

D=4 

… 

… 

Write barrier 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = 3; 
STORE D = 4; 
STORE E = 5; 

Sequence in which stores are  
committed to memory by CPU1 

CPUx 

E=5 

Events perceptible to the  
rest of the system 



Example without DD_bar 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = &B; 
STORE D = 4; 

L1 Cache 

LOAD X; 
LOAD C; 
LOAD *C; 

L1 Cache 

Main memory 

CPU2 
CPU1 

Initially: { B = 7; X = 9; Y = 8; C = &Y } 



Sequence of ops without DD_bar 

CPU1 

B=2 
ti
m

e
lin

e
 

A=1 

C=&B 

D=4 

… 

… 

Write barrier 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = &B; 
STORE D = 4; 

CPU2 

LOAD X; 
LOAD C; 
LOAD *C; C=&Y 

B=7 

Initially: B = 7; X = 9; Y = 8; C = &Y 

B=2 

A=1 

B=2 

A=1 

B=2 

D=4 

A=1 

B=2 

D=4 

A=1 

B=2 

C=&B 

X=9 D=4 

A=1 

B=2 Y=8 

Incorrect 
perception of B 
(7 instead of 2) B=2 



Inserting a DD_bar 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = &B; 
STORE D = 4; 

L1 Cache 

LOAD X; 
LOAD C; 
DD_bar; 
LOAD *C; 

L1 Cache 

Main memory 

CPU2 
CPU1 

Initially: { B = 7; X = 9; Y = 8; C = &Y } 



C=&B 

Sequence of ops with DD_bar 

CPU1 

ti
m

e
lin

e
 

D=4 

… 

… 

Write barrier 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = &B; 
STORE D = 4; 

CPU2 

LOAD X; 
LOAD C; 
DD_bar; 
LOAD *C; C=&Y 

B=7 

Initially: { B = 7; X = 9; Y = 8; C = &Y } 

D=4 D=4 

B=2 

C=&B 

X=9 D=4 

A=1 

Y=8 

CPU2 reads 
updated value  
*C = B = 2 

B=2 

DD barrier 



C=&B 

Sequence of ops with DD_bar 

CPU1 

ti
m

e
lin

e
 

D=4 

… 

… 

Write barrier 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = &B; 
STORE D = 4; 

CPU2 

LOAD X; 
LOAD C; 
DD_bar; 
LOAD *C; C=&Y 

B=7 

Initially: { B = 7; X = 9; Y = 8; C = &Y } 

D=4 D=4 

B=2 

C=&B 

X=9 D=4 

A=1 

Y=8 

B=2 

DD barrier 

“A data dependency barrier guarantees 
that for any load preceding it, if that load 
touches one of a sequence of stores from 
another CPU, then by the time the barrier 
completes, the effects of all the stores prior 
to that touched by the load will be 
perceptible to any load issued after the 
data dependency barrier”. 



Example: DD_bar and arrays 

M[1] = 4; 
Wr_bar; 
J = 1; 

L1 Cache 

K = J; 
DD_bar; 
D = M[K]; 

L1 Cache 

Main memory 

CPU2 CPU1 

Initially: { M[1] = 2, M[3] = 3, J = 0, K = 3 }  



Read (or load) memory barriers 

 All LOAD operations before the barrier will 
appear (to other system components) to 
happen before all LOAD operations after the 
barrier 

 No effect on store operations 

 Stronger than data dependency barrier 
 DD_bar applies only to dependent loads 

 Rd_bar applies to all load operations  

 Therefore, a Rd_bar implies a DD_bar 



Example (without Rd_bar) 

STORE A = 1; 
Wr_bar; 
STORE B = 2; 

L1 Cache 

LOAD B; 
LOAD A; 

L1 Cache 

Main memory 

CPU2 CPU1 

Initially: { A = 0; B = 9 } 

Independent 
load ops 



Sequence of ops without Rd_bar 

CPU1 

ti
m

e
lin

e
 

A=1 

Write barrier 

STORE A = 1; 
Wr_bar; 
STORE B = 2; 

CPU2 

B=9 

A=0 

B=2 B=2 

A=0 

Incorrect 
perception of A 
(0 instead of 1) A=1 

Initially: { A = 0; B = 9 } 

LOAD B; 
LOAD A; 



Inserting a Rd_bar 

STORE A = 1; 
Wr_bar; 
STORE B = 2; 

L1 Cache 

LOAD B; 
Rd_bar; 
LOAD A; 

L1 Cache 

Main memory 

CPU2 
CPU1 

Initially: { A = 0; B = 9 } 



Sequence of ops with Rd_bar 

CPU1 

ti
m

e
lin

e
 

A=1 

Write barrier 

STORE A = 1; 
Wr_bar; 
STORE B = 2; 

CPU2 

B=9 

A=0 

B=2 B=2 

A=0 

A=1 

Initially: { A = 0; B = 9 } 

LOAD B; 
Rd_bar; 
LOAD A; 

Rd barrier 

CPU2 reads 
updated value  

A = 1 



Rd_bar vs DD_bar 

 A read barrier has to be used instead of a 
data dependency barrier when  

 there is no data dependency between the 
operations involved. E.g.,  

or 

 there is a control dependency between the 
operations involved. E.g.,  

LOAD B; 
LOAD A; 

Q = &A; 
if (C) 
    Q = &B; 
<BARRIER> 
X = *Q 

Here we need a Rd_bar!  
A DD_bar is not sufficient since 
there is a control dependency 
between “Q=&B” and “X=*Q” 



Pairing memory barriers 

 A write barrier needs a data dependency 
barrier or a read barrier, to work properly 

 The partial ordering enforced by a Wr_bar on 
a CPU can be perceived by other CPUs only if 
they use a paired DD_bar (or Rd_bar) 

 Typically the stores before the Wr_bar match 
the loads after the Rd_bar (or DD_bar) and 
viceversa A = 1; 

B = 2; 
Wr_bar;  
C = 3; 
D = 4; 

Z = C; 
W = D; 
Rd_bar; 
X = A; 
Y = B; 



General memory barriers 

 All LOAD and STORE operations before the 
barrier will appear (to other system 
components) to happen before all LOAD and 
STORE operations after the barrier 

 Combine the functionalities of Wr_bar and 
Rd_bar 

 Therefore, a Full_bar implies both a Wr_bar and a 
Rd_bar 



Linux kernel barriers 

 Compiler barriers 

 barrier(); 

 CPU memory barriers 

 Mandatory barriers: mb(); wmb(); rmb(); 
read_barrier_depends(); 

 SMP conditional barriers: smp_mb(); smp_wmb(); 
smp_rmb(); smp_read_barrier_depends(); 

 MMIO write barriers 

 mmiowb(); 



Implicit kind of barriers 

 LOCK and UNLOCK operations 

 They are unidirectional barriers that are 
permeable to read and write accesses only in 
one way 

 Used to delimit Critical Sections of code to 
which a process need exclusive access 



Critical Section (CS) 

 A shared resource (data structure or device) 
that must be exclusively accessed by one 
thread 

 Synchronization mechanism required at 
Critical Section boundaries 

 On uni-processors can be implemented 
avoiding context switches (e.g., disabling 
interrupts and preemptions) 

 On multi-processors this is no more valid 



Lock operations 

 All LOAD and STORE operations after the lock 
will appear (to other system components) to 
happen after the lock 

 Memory operations occurring before the lock 
may appear to happen after it completes 

... 

... 
 
 
... 
... 

LOCK 



Unlock operations 

 All LOAD and STORE operations before the 
unlock will appear (to other system 
components) to happen after the unlock 

 Memory operations occurring before the unlock 
may appear to happen after it completes 

... 

... 
 
 
... 
... 

UNLOCK 



Critical section implementation 

 Lock and Unlock 
operations are 
almost always 
paired 

 They delimit 
Critical Sections 

 When lock/unlock 
are used, no need 
for explicit 
memory barriers  

UNLOCK 

LOCK 

Critical Section 



Question 

 Is a LOCK followed by an UNLOCK equivalent 
to a full memory barrier? 

LOCK 

= = 
? 

Code… 

Code… 

Code… 

Code… 

UNLOCK 
FULL_BAR 



Lock/Unlock vs Full_bar 

ti
m

e
lin

e
 

*A = a; 
LOCK; 
UNLOCK; 
*B = b; 

Store *B 

LOCK 

UNLOCK 

Store *A 

tim
e
lin

e
 

Store *B 

FULL_BAR 

Store *A 
*A = a; 
FULL_BAR; 
*B = b; 



Question 

 Is an UNLOCK followed by a LOCK equivalent 
to a full memory barrier? 

UNLOCK 

= = 
? 

Code… 

Code… 

Code… 

Code… 

LOCK 
FULL_BAR 



Unlock/Lock vs Full_bar 

ti
m

e
lin

e
 

*A = a; 
UNLOCK; 
LOCK; 
*B = b; 

Store *B 

UNLOCK 

LOCK 

Store *A 
tim

e
lin

e
 

Store *B 

FULL_BAR 

Store *A 
*A = a; 
FULL_BAR; 
*B = b; 

= = 



Example 1 

Other CPUs might see, for 
example: 

 *E, LOCK M, LOCK Q, *G, 
*C, *F, *A, *B, UNLOCK Q, 
*D, *H, UNLOCK M 

 

But they will never see: 

 *B, *C or *D before LOCK M 

 *A, *B or *C after UNLOCK M 

 *F, *G or *H before LOCK Q 

 *E, *F or *G after UNLOCK Q 

*A = a; 
LOCK M; 
*B = b; 
*C = c; 
UNLOCK M; 
*D = d; 

*E = e; 
LOCK Q; 
*F = f; 
*G = g; 
UNLOCK Q; 
*H = h; 

CPU1 CPU2 

Different spin locks M and Q 

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1263


Example 2 

CPU1 CPU2 

Same spin lock M 

Other CPUs might see, for 
example: 

 *E, LOCK M[1], *C, *B, *A, 
UNLOCK M[1], LOCK M[2], 
*H, *F, *G, UNLOCK M[2], *D  

 
But, assuming CPU1 gets the 

lock first, they will never see: 
 *B, *C, *D, *F, *G or *H 

before LOCK M[1] 
 *A, *B or *C  
 after UNLOCK M[1] 
 *F, *G or *H  
 before LOCK M[2] 
 *A, *B, *C, *E, *F or *G 
 after UNLOCK M[2] 

[1] 

[1] 

[2] 

[2] 

*A = a; 
LOCK M; 
*B = b; 
*C = c; 
UNLOCK M; 
*D = d; 

*E = e; 
LOCK M; 
*F = f; 
*G = g; 
UNLOCK M; 
*H = h; 

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1291
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1292


Advisory vs mandatory locks 

 Advisory lock 

 Each thread cooperates by acquiring the lock 
before accessing the protected resource 

 Mandatory lock 

 Attempting unauthorized access to a locked 
resource forces an exception 



Lock implementation 

 For single processors the exclusive access to 
a shared resource can be implemented 
disabling interrupts 

 For multiprocessors this is not enough! 

 Hardware support required for efficient 
implementation 

 Atomic instruction(s) needed: test if lock is 
free and acquire the lock in a single atomic 
operation 



Read-Modify-Write (RMW) 

 RMW instructions atomically do both the 
following operations: 

 read a memory location 

and 

 write a new value into it simultaneously (either a 
completely new value or some function of the 
previous value)  

 Example: Test-and-set(); Compare-and-
swap(); Fetch-and-add(); Dec_and_test(); 
etc. 



Why atomicity is required? 

 Consider two processes executing the 
following piece of code to acquire the same 
lock: 

 

 

 If both tasks test the “lock” value at the 

same time, they will both detect that the lock 
is free  they will both acquire the lock! 

if (lock == 0)   
 lock = process_PID; 

The access to the CS is not exclusive 



Without atomic locking  
ti
m

e
lin

e
 

LOAD R1lock 

STORE lockPID1 

if (lock == 0)   
 lock = process_PID; 

if (lock == 0)   
 lock = process_PID; 

Thread 1 Thread 2 

ti
m

e
lin

e
 

LOAD R1lock 

STORE lockPID2 

Since R1 = 0 
acquire_lock 

Since R1 = 0 
acquire_lock 

CS code 

CS code 



With atomic locking  
ti
m

e
lin

e
 

LOAD R1lock 

STORE lockPID1 

if (test_and_set(lock,0,PID1)) 
 <CS code> 

if (test_and_set(lock,0,PID2)) 
 <CS code> 

Thread 1 Thread 2 

ti
m

e
lin

e
 

LOAD R1lock 

Since R1 = 0 
acquire_lock 

Since R1 = PID1 
do_something_else 

CS code 

atomic Bus locked 



Atomic instructions in Linux 

 Read-Modify-Write instructions: 

 xchg(); cmpxchg(); atomic_cmpxchg(); 

 atomic_[inc|dec|add|sub]_return(); 

 atomic_[inc|dec|sub]_and_test(); 

 atomic_add_[negative|unless](); 

 test_and_[set|clear|change]_bit(); 

 Other atomic instructions: 

 atomic_set(); [set|clear|change]_bit(); 

 atomic_[inc|dec|add|sub](); 



Atomic operations in Linux 

 Are executed without being interrupted by 
other operations 

 Atomic operations that modify some state in 
memory and return information about the 
state (old or new) imply an SMP-conditional 
general memory barrier  (smp_mb()) on each 
side of the actual operation  

 E.g., cmpxchg(); atomic_dec_and_test(); 
test_and_set_bit(); ... 



Otherwise... 

 Round-robin 

 Strict alternation: each thread can lock the 
resource at its turn 

 Dekker’s algorithm 

 Limited to two processes and busy waiting 

 Peterson’s algorithm 

 Originally formulated for two processes, can be 
generalized to more than two 



Dekker’s algorithm 

 Uses two flags (f0 and f1) to indicate 
“intention to enter”, and a turn variable 

f0 = true  
while f1 { 
 if turn ≠ 0 { 
  f0 = false 
  while turn ≠ 0 { }                                    
             f0 = true  
 } 
} 
// … Critical Section … 

turn = 1 
f0 = false  

Initially, f0 = false; f1 = false; turn = 0 (or 1) 
Thread1 

f1 = true  
while f0 { 
 if turn ≠ 0 { 
  f1 = false 
  while turn ≠ 1 { }            
             f1 = true  
 } 
} 
// … Critical Section … 

turn = 0 
f1 = false  

Thread2 



Peterson’s algorithm 

 Uses two flags (f0 and f1) to indicate 
“intention to enter”, and a turn variable 

f0 = true  
turn = 1 
while (f1 && turn==1) {} 
 
// … Critical Section … 

 
f0 = false  

Initially, f0 = false; f1 = false; turn = 0 (or 1) 

Thread1 

f1 = true  
turn = 0 
while (f0 && turn==0) {} 
 
// … Critical Section … 

 
f1 = false  

Thread2 



Considerations 

 Dekker’s and Peterson’s algorithm would 

need memory barriers when used on 
processors with instruction reordering 

 More efficient solutions are provided using 
atomic operations 



Key design aspects for locks 

 Overhead 

 extra resources used just for the implementation 
of the lock  memory space, time for lock 

initialization/destruction and acquire/release 

 Contention 

 number of threads that can concurrently request 
the lock  a locked shared by many processes 

implies a larger blocking probability 

 Granularity 

 size of the protected region  course vs fine 

granularity 



Lock granularity 

 Coarse granularity 

 less overhead, but more lock contention 

 Fine granularity 

 larger number of “faster” locks 

 larger system overhead 

 higher risk of deadlocks 

 Example: locking a whole table, a row, or a 
single entry 



Risks related to locking 

 Blocking time  starvation, lack of fairness 

 Locking tasks stalls/blocks/dies/loops 

 Error-prone due to crossed dependencies 
difficult to detect for larger program sizes 

 Deadlocks, livelocks 

 Priority inversion 

 Bugs difficult to reproduce 



Linux kernel locking constructs 

 Spin locks 

 R/W spin locks 

 Mutexes 

 Semaphores 

 R/W semaphores 

 RCU 

All require atomic instruction support 

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1111
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1112
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1113
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1114
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1115


Spinlock 

 A thread waits (“spins”) until the lock is 

available 

 Wasteful if locks are held for a long time 

 On a single processor, many time quanta may be 
wasted due to spinning on a resource locked by a 
preempted thread 

 Efficient for short locks  avoid process re-

scheduling 



Spinlock: example 

 The lock variable is 1 when 
locked, 0 when unlocked 

 “xchg eax, [lock]” atomically 

swap the EAX register with 
the lock variable 

 “test eax, eax” sets the zero 

flag if EAX = 0 

 If zero flag is set, the lock 
has been acquired 

 Otherwise spin 

lock: 
 dd 0 
 
spin_lock: 
 mov  eax, 1 
 
loop: 
 xchg eax, [lock] 
 test eax, eax 
 jnz loop 
 ret 



Spinlock: unlock 

 To release the lock, reset the 
lock variable to zero 

 

lock: 
 dd 0 
 
spin_unlock: 
 mov  eax, 0 
 xchg eax, [lock] 
 ret 
 
 
 
 



Spinlock and interrupts 

 When an interrupt handler can access the 
lock as well, the following situation might 
occurr 

spin_lock(&lock); 
… 

 

… 

spin_lock(&lock); 

Interrupt comes in 

Process on CPU1 

DEADLOCK!!! 
Waits for the release of the 
lock which will never happen 



Solution: disable interrupt 

 Disable interrupts 

spin_lock(&lock); 
cli(); 
… 

sti(); 
spin_unlock(&lock) 

Process on CPU1 

spin_lock(&lock); 
… 

spin_unlock(&lock); 

Interrupt arrival 

handling 
deferred 



Spinlock and interrupts 

 Only local interrupts need to be disabled  
not necessary to disable interrupts on other 
CPUs 

 

 

 

 

 

 In Linux 
 xxx_lock_irqsave(...) 

 xxx_unlock_irqrestore(...) 

spin_lock(&lock); 
… 

<continue exec> 
spin_unlock(&lock) 

Process on CPU1 

spin_lock(&lock); 
… 

spin_unlock(&lock); 

Interrupt arrival 
on CPU2 



Reader-Writer spinlocks 

 Allow multiple readers to be in the same 
critical section at once 

 Do not allow more than one single writer at a 
time 

 Usually, there is no need to read a shared 
resource with an exclusive access to it... 

 ... as long as no other process modifies it! 



R/W spin locks in Linux: read  

 Readers acquire/release the lock with  

 read_lock(&xxx_lock, flags);  

 read_unlock(&xxx_lock, flags); 

 If no process is holding a write lock on the 
same resource, the read lock can be acquired 

 The only result will be an increment/decrement 
in the counter of the processes currently 
holding the lock 



R/W spin locks in Linux: write 

 Writer acquires/releases the lock with 

 write_lock(&xxx_lock, flags); 

 write_unlock(&xxx_lock, flags);  

 It can acquire the lock only when there is no 
process holding a (read or write) lock  

check the lock_counter 

 When a process is holding a write lock, no 
other process can acquire the lock 



Considerations 

 R/W spin locks are faster than normal spin 
locks, allowing more readers to 
contemporarily access the resource 

 If we know that interrupts will only need read 
locks, possible to use  

 read_lock(&lock) for read accesses 

and 

 write_lock_irqsave(&lock, flags) for write accesses 



Busy-wait 

 Busy-wait is an anti-pattern associated to 
“spinning” before entering a critical section 

 Waste of CPU cycles 

 May delay subsequent requests, reducing the 
spinning frequency 

 Better to block the process on events like 
lock acquisitions, timers, I/O availability, or 
signals  the blocked thread is put in 

sleeping state and other threads are executed 



Locking strategies 

 Instead of “spinning”, a more efficient 
method is using semaphores with blocking 

 Thread must acquire a semaphore before 
entering a CS 

 Block the execution of the thread requesting 
the lock until it is allowed to acquire the 
semaphore 

 Other threads can execute other code/critical 
sections 



Semaphores 

 A protected variable to restrict the access to 
shared resources 

 Implemented by a counter for a set of 
available resource  counting semaphore 

 Binary semaphores are called mutexes 

 Prevents race conditions but not deadlocks 



Non-blocking synchronization 

 Overcomes the disadvantages of using locks 

 Lock-free 

 a thread cannot lock up: every step it takes brings 
progress to the system 

 Wait-free 

 a thread can complete any operation in a finite 
number of steps, regardless of other threads  

 All wait-free algorithms are lock-free (but not 
viceversa) 

 No semaphores nor mutexes 



Lock-free algorithms 

 Still need atomic instructions like Test-and-
set, Compare-and-swap, etc. 

 Example: 
CAS(addr, old, new) 
{  
atomic 
 if (*addr == old) 
 then {*addr = new ; 
  return true} 
 else return false 
endatomic  
} 



Example: bank account 

 Each thread represents a teller trying to make 
a deposit onto the same account 

Thread1 Thread2 

Bank account 

 Need to synchronize simultaneous deposits to 
the account 



Write conflict 

 If both threads simultaneously read the 
account  a transaction is lost! 

deposit(money) 
{ 
 A = read_account(); 
 A = A + money; 
 write_account(A); 
} 

deposit(money) 
{ 
 A = read_account(); 
 A = A + money; 
 write_account(A); 
} 

Thread 1 Thread 2 



Locking solution 

 Each teller has to acquire a lock before doing 
a deposit: 

deposit(money) 
{  
 lock(account); 
 A = read_account(); 
 A = A + money; 
 write_account(A); 
 unlock(account);  
} 

 Implies locking overhead 



Lock-free solution 

 Use Compare_And_Swap(address,old,new): 

 deposit(money) 
{  
 do{ 
  A = read_account(); 
  B = A + money; 
 } 
 while (! CAS(account, A, B) )  
} 

 Lock-free but not wait-free: other tellers may 
keep writing new values  failing teller tries 

again indefinitely 



Reducing contention 

 To reduce traffic on the bus due to repeated 
reads, failing threads may wait some time 
before trying another update  

 constant delay 

 incremental delay 

 random delay 

 



ABA problem 

 Arises when a thread reads a location a 
second time to detect if anything has 
changed from the first read 

 But another thread could have modified and 
restored the value at that location, e.g. 

 Thread 1 reads A from a shared memory location 

 Thread 2 modifies the same location from A to B 
and back to A 

 Thread 1 reads again the value A and assumes 
nothing changes  ERROR!!! 



ABA problem with lock-free 

 Push and Pop function of a stack list 

Obj* Pop()  
{ 
      while(1) { 
 Obj* ret = top; 
 if (!ret) return NULL; 
 Obj* next = ret->next; 
 if (CAS(&top, ret, next))  
  return ret; 
      } 
} 

void Push(Obj* obj)  
{ 
     while(1) { 
 Obj* next = top; 
 obj->next = next; 
 if (CAS(&top, next, obj))  
  return; 
      } 
} 
 



ABA problem with CAS 

 Suppose initially the stack contains 

top  A  B  C 

 Suppose Thread1 is preempted during the 
Pop() by Thread2 

Thread1 
{ 
 Pop();  
} 

Thread2 
{ 
 Pop();  
 Pop(); 
 Push(A); 
} 

top  A  C 
top  C 
top  B  C 



ABA problem with CAS 

 Thread1’s Pop operation: 

Obj* Pop()  
{ 
      while(1) { 
 Obj* ret = top;  
 if (!ret) return NULL; 
 Obj* next = ret->next; 
  
//--- PREEMPTED BY THREAD2--- 
 
 if (CAS(&top, ret, next))  
  return ret; 
      } 
} 

ret  A 

next  B 

top  A  C 

CAS succeeds but leaves 
the stack in wrong state: 

top  ???! (B was popped 
by Thread2) 



Transactional memory 

 Lock-free approach that is able to deal with 
the ABA problem 

 Allows a group of load and store instructions 
to execute in an atomic way 

 Load-Link/Store-Conditional 

 Software Transactional Memory (STM) 



Load-Link/Store-Conditional 

 LL works like a normal load from a memory 
location 

 A subsequent SC to the same memory 
location will store a new value only if no 
updates have occurred to that location since 
the load-link, otherwise it fails 

 SC fails even if the value read by LL has since 
been updated and then restored (ABA 
problem)  LL/SC is stronger than read/CAS 



Software Transactional Memory 
(STM) 

 Optimistic behavior: threads complete 
modifications to shared memory regardless of 
other threads 

 They record every read and write in a log 

 Each reader verifies that other threads have 
not concurrently made changes to memory 
that it accessed in the past 

 commit permanent changes if validation is 
successful 

 otherwise abort, undoing all its prior changes 



STM: considerations 

 The conflict control is placed on the reader 
instead of the writer 

 Increased concurrency: no need to wait for 
access to a resource 

 Increased overhead in case of failing 

 Good performance in practice  conflicts 

arise rarely in practice 



Read-Copy Update (RCU) 

 Split updates into “removal” and 
“reclamation” phases 

 The removal phase 

 removes references to data items within a data 
structure (possibly by replacing them with 
references to new versions of these data items) 

 can run concurrently with readers which will see 
either the old or the new version of the data 
structure rather than a partially updated reference  



RCU 

 The reclamation phase 

 frees the data items removed from the data 
structure during the removal phase 

 must not start until readers no longer hold 
references to those data items  

 reclaiming can be done either by blocking or by 
registering a callback  

 No need to consider readers starting after the 
removal phase  they are unable to gain a 

reference to the removed data items 



RCU typical sequence 

1. Remove pointers to a data structure  later 

readers cannot gain a reference to it 

2. Wait for all previous readers to complete 
their RCU read-side critical sections  

3. Reclaim the data structure (e.g., using kfree 
in the Linux kernel) 

top 



Advantages of RCU 

 Wait-free reads 

 RCU readers use much lighter-weight 
synchronization  low overhead 

 Reclamation phase may by done by entirely 
different thread  e.g., Linux directory entry 

cache 

 

 



Where does the name come from? 

 Read-Copy Update 

 A thread wishing to update a linked structure 
in place does the following 

 creates a new structure, copying the data from 
the old structure into the new one 

 modifies the new, copied, structure 

 updates the pointer to refer to the new structure 

 sleeps until there are no readers left  

 Therefore, an RCU protected structure is 
Read concurrently with a thread Copying in 
order to do an Update  



Linux RCU implementation 

 RCU API 

 rcu_read_lock()  

 rcu_read_unlock()  

 synchronize_rcu() / call_rcu()  

 rcu_assign_pointer()  

 rcu_dereference()  



Conclusion 

 Sharing data on multicore platforms requires 
attention 

 Possible to choose among different constructs 
(spinlocks, semaphores, R/W locks, RCU, …) 

 Using proper mechanism it is possible to 
exploit the power of multicore 

 Start thinking parallel! 


