
Synchronization 



Terminology 

 Threads 

 Processes (or tasks) 
 Independent 

 Considerable state info 

 Separate address space 

 Resources 
 Memory, file handles, 

 sockets, device handles  

 Owned by processes 



Threads and processes 
 Thread of a same process share the same 

resources 

 Processes can share resources only through 
explicit methods 

 The only resources exclusively owned by a 
thread are the thread stack, register status 
and thread-local storage (if any) 



Scheduling 

 A scheduler is responsible to allocate tasks 
and threads to the available computing 
resources 

 Various kind of scheduling algorithms 
 Best-effort  minimize makespan 

 Real-Time  meet deadlines 

 … other metrics to minimize 

 Preemption and context changes 

 Access to shared resources 



Multithreading 
 Classic multithreading on single processor 

systems required Time Division Multiplexing 
(TDM) 

 Time driven 

 Event driven 

 Multiprocessors  different threads and 

processes can run on different CPUs 

 Multithreading is easier (“native”) on 

multicore platforms 

 But scheduling requires more attention 



Multithreading issues 

 Race conditions 

 Starvation, priority inversion, deadlock, 
livelock 

 Mamihlapinatapai 

 Synchronization (mutex, lock) 

 Atomic execution (semaphores) 

 Communication: 

 shared-memory (requires locking) 

 message-passing (slower but easier) 



Different kinds of Parallelisms 

 Instruction Level Parallelism (ILP) 

 Data Level Parallelism (DLP) 

 Thread Level Parallelism (TLP) 



Instruction Level Parallelism (ILP) 
 Execute multiple instruction per clock cycle 

 Each functional unit on a core is an execution 
resource within a single CPU:  

 Arithmetic Logic Unit (ALU) 

 Floating Point Unit (FPU) 

 bit shifter, multiplier, etc. 

 Need to solve data dependencies 



Data dependency 

 Consider the sequential code: 

1. e = a + b  

2. f = c + d  

3. g = e * f  

 Operation 3. depends on the results of 
operations 1. and 2. 

 Cannot execute 3. before 1. and 2. are 
completed 



How to “parallelize” software? 

 Parallelism can be extracted from ordinary 
programs 

 At run-time (by complex specific HW)  

 At compile-time (simplifying CPU design and 
improving run-time performances) 

 Degree of ILP is application dependent 



ILP: superscalar architectures 
 Data dependency check in HW 

 Complex mechanisms 

 power, die-space and time consuming  

 Problematic when  

 code difficult to predict 

 Intructions have many interdependencies 



Superscalar pipelining 

(5x) stage pipelining 
(2x) Superscalar execution 



ILP optimizations 

 Instruction pipelining 

 Superscalar execution 

 Out-of-order execution 
 deferred memory accesses 

 combined load and store 

 Speculative execution  
 branch prediction,  

 speculative load 

 … 



Processor front and back end 
 Intel describes its processors having 

 “in-order front end” 

 “out-of-order execution engine” 



ILP: compile-time techniques 

 Compiler decides which operations can run in parallel 

 Removes the complexity of instruction scheduling 
from HW to SW 

 New instruction sets that explicitly encode multiple 
independent operations per instruction 

 Very Long Instruction Word (VLIW): one instruction encodes 
multiple operations (one for each execution unit) 

 Explicitly Parallel Instruction Computing (EPIC): adds 
features to VLIW  (cache prefetching instructions, ...) 



Data Level Parallelism (DLP) 
 Higher parallelism than superscalar architecture 

 SIMD instructions (Single Instruction, Multiple Data) 
 Intel’s MMX, SSE, SSE2, SSE3, SSE3, SSSE3, SSE4, AVX 

 AMD’s 3DNow!, SSE5 

 ARM’s NEON, IBM’s AltiVec and SPE, etc. 

 Graphic cards (GPU) 

 Cell Processor’s SPU 

 Useful when the same operation has to be applied to 
a large set of data (i.e., multimedia, graphic 
operations on pixels, etc.) 

 Multiple data are read and/or modified at the same 
same 



Thread Level Parallelism (TLP) 

 Higher level parallelism than ILP 

 Different kinds of TLP 

 Superthreading 

 Hyperthreading or Symultaneous MultiThreading 
(SMT) 

 Needs superscalar processor 

 Chip-level MultiProcessing (CMP) 

 Needs multicore architecture 

 Combinations of the above solutions 



Superthreading 

 Temporal Multithreading (fine- or coarse-
grained)  when processor idle, execute 

instruction of another thread 

 Makes better use of the computing resources 
when a thread is blocked  

 Requires adequate hardware support to 
minimize context change overhead 

 



Hyperthreading 

 Simultaneous MultiThreading (SMT) 

 Introduced in late 90s: Intel’s Pentium 4 

 Execute instructions from multiple threads 
simultaneously  needs superscalar support 

 Energy inefficient 

 Increases cache thrashing by 42%, whereas dual 
core results in a 37% decrease 



4 running programs 

Only the red program  
is executing 

Up to 4 instr/clock cycle 

7 functional units 

Pipeline bubbles 

Single-threaded CPU 



Super-threading (time-slice 
multithreading) 

Multithreaded processor: 
able to handle more than  

one thread at a time 

All instructions in a pipeline 
stage must come from  

the same thread 

Interleaved execution of 
different threads (helps 

masking memory latency) 



Hyper-threading (Simultaneous 
MultiThreading) 

Instructions in a pipeline 
stage may come from  

different threads 

Interleaved execution of 
different threads (helps 

masking memory latency) 



Hyper-threading (SMT) 

 From OS perspective: many “logical” 

processors 

 Average ILP for a thread = 2.5 instr/cycle  

 Pentium 4 issues at most 3 instr/cycle to the 
execution core 

 Hyperthreaded processor can exploit 
parallelism beyond a single thread ILP 



But.. 

 SMT can be worse than non-SMT approaches 

 A thread monopolizing an execution unit for many 
consecutive pipeline stages can stall the available 
functional units (that could have been used by 
other threads) 

 Cache thrashing problem 

 Different logical processor can execute two 
threads accessing completely different memory 
areas 



Not a problem for Multicores 

 A smart SMT-aware OS running on a 
multicore would schedule two different tasks 
on different processors  resource 

contention is minimized 



Summary 

 Out-of-order execution problems on multicore 
platforms 

 Data dependencies 

 Race conditions 

 Memory barriers 

 Locking mechanisms 

 Spinlocks, semaphores, mutexes, RCU 



Introduction: execution ordering 

 A processor can execute instructions in any 
order (or in parallel), provided it maintains 
program causality with respect to itself 

 The compiler may reorder instructions in 
many ways, provided causality maintainance 

 Some CPUs are more constrained than others 

 E.g., i386, x86_64, UltraSPARC are more 
constrained than PowerPC, Alpha, etc. 

 Linux assumes the DEC Alpha execution ordering 
 the most relaxed one 



Out-of-order execution 

 Loads are more likely to need to be 
completed immediately 

 Stores are often deferred 

 Loads may be done speculatively, leading to 
discarded results 

 Order of memory accesses may be 
rearranged to better use buses and caches 

 Multiple loads and stores can be parallelized 



Optimizations 

 CPU or Compiler optimizations: overlapping 
instructions may be replaced 

 E.g., two consecutive loads to the same 
value/register 

 

 

 A load operation may be performed entirely inside 
the CPU 

1) A = V;  
2) A = W; 

1) *P = A; 
2) B = *P; 

A = W; 

1) *P = A; 
2) B = A; 



Cache coherency is not enough 

 While the caches are expected to be 

coherent, there's no guarantee that that 
coherency will be ordered  

 Whilst changes made on one CPU will 

eventually become visible on all CPUs, there's 
no guarantee that they will become apparent 
in the same order on those other CPUs 



Causality maintanance 

 If an instruction in the stream depends on an 
earlier instruction, then that earlier instruction 
must be “sufficiently complete” before the 

later instruction may proceed 

 Need to analyse the dependencies between 
operations 



Dependencies 

 A “dependency” is a situation in which an 

instruction refers to the data of a preceding 
instruction 

 Data dependencies 

 Read after Write 

 Write after Read 

 Write after Write 

 Control dependencies 



Read after Write 

 True (or flow) dependence: 

 an instruction depends on the result of a previous 
instruction 

 Example: 

1) A = 3;  
2) B = A + 1; 

A is modified by the first 
instruction and used in the 

second one 

It is not possible to use 
instruction level parallelism 



Write after Read 

 Antidependence: 

 an instruction requires a value that is updated by 
a later instruction 

 Example: 

1) B = A + 1;  
2) A = 3; 

A is modified by the second 
instruction and used by the 

first one 

It is not possible to use 
instruction level parallelism 



Write after Write 

 Output dependence: 

 two instructions modify the same resource 

 Example: 

1) A = 4; 
2) A = 5; 

A is modified by both 
instructions 

It is not possible to use 
instruction level parallelism 



Other dependencies 

 Read after Read a.k.a Input dependency 

 two instructions read the same resource 

 Control dependency 

 instruction execution depends on a previous 
instruction  e.g., conditional statements 

1) B = A + 1; 
2) C = A + 2; 

A is read by both instructions 

ILP is possible!  

if (x == true) 
A = 5; 

“A = 5” executed only if x is 

true in the previous instruction 



Considerations on dependencies 

 No need to consider dependencies when a strict 
sequential execution model is used 

 Otherwise, dependence analysis is needed for 

 CPU exploiting instruction level parallelism 

 out-of-order execution 

 parallelizing compiler 

 Need to enforce execution-order constraints to limit 
the ILP of a system 

 Usually automatically solved by compiler/HW 

 Concerns the behavior of a single thread 



More than dependencies... 

 When more threads are concurrently executed  
additional “dependency” problems 

 Instructions from different tasks/threads may need to 
access the same global resources 

 Problems similar to dependency problems, but more 
difficult to detect/solve 

 Explicit programmer intervention is needed 

 Need to synchronize the accesses to shared 
resources 



Synchronization mechanisms 

 Process synchronization 
 Barrier 

 Lock/semaphore 

 Critical sections 

 Thread join 

 Mutex 

 Non-blocking synchronization 

 Data synchronization 
 Keep multiple copies of a set of data coherent 

with one another 

 E.g., cache coherency, cluster file systems, RAID, 
etc. 



Process synchronization problems 

 Race conditions  

 Deadlock 

 Livelock 

 Starvation 

 Lack of fairness 



Race conditions 

 More tasks read/modify the same global 
variable 

 “Race” for which task modifies the global 

value first 

 Output depends on the particular sequence of 
task operations 

 Non-deterministic behavior 



Race conditions: example 1 

global int A = 0 
 
task T1 () 
 A = A + 1 
 print A 
end task 
 
task T2 () 
 A = A + 1 
 print A 
end task 

 Two concurrent tasks T1 and 
T2 are activated 

 Both tasks modify the same 
global variable A 

 Expected behavior: 

 T1 reads 0 

 T1 increments A to 1 

 T1 prints 1 

 T2 reads 1 

 T2 increments A to 2 

 T2 prints 2 

 Expected final output = 2 



Race conditions: example 1 

global int A = 0 
 
task T1 () 
 A = A + 1 
 print A 
end task 
 
task T2 () 
 A = A + 1 
 print A 
end task 

 Problem if operation 
“A=A+1” is not performed 

atomically 

 Possible behavior: 

 T1 reads 0 

 T2 reads 0 

 T1 increments A to 1 

 T2 increments A to 1 

 T1 prints 1 

 T2 prints 1 

 Final output = 1 !!! 



Race conditions: example 2 

A = 3;  
B = 4; 

x = A; 
y = B; 

Two global variables 
{ A = 1; B = 2 } 

CPU1 CPU2 

 n! = 24 different combinations for memory 
accesses 

 4 different outputs:  

 (x,y) = (1,2); (1,4); (3,2); (3,4) 

with out-of-
order execution 



Race conditions: example 3 

B = 4; 
P = &B; 

Q = P; 
D = *Q; 

Five global variables 
{ A = 1, B = 2, C = 3, P = &A, Q = &C } 

CPU1 CPU2 

with out-of-
order execution 

NB: Data dependency  Q is 

modified in the first instruction 
and used in the second one 



Race conditions: example 3 

B = 4; 
P = &B; 

Q = P; 
D = *Q; 

Five global variables 
{ A = 1, B = 2, C = 3, P = &A, Q = &C } 

CPU1 CPU2 

with out-of-
order execution 

 Partial order enforcement by CPU2  only 12 

different combinations for memory accesses and 
three different outputs:  

 (Q=P,D) = (&A,1); (&B,2); (&B,4) 

 D will never receive the value in C 



Race conditions on devices 

 Some devices present their control interfaces 
as collections of memory locations 

 The order in which control registers are 

accessed may be crucial 

 E.g.: Ethernet card with internal register set 
accessed through address (A) and data (D) 
port registers 

A = 5; 
x = *D; 

To read internal register #5: 



Race conditions on devices 

 Out-of-order execution may cause second 
instruction be executed before the first one 
 malfunction! 

 Since there is no explicit data dependency, 
these problems are difficult to detect 

A = 5; 
x = *D; 

Read register #5: 



Things that can be assumed 

 Dependent memory access on a given CPU 
are always executed in order 

Q = P; 
D = *Q; 

 Overlapping load and stores within a CPU 
maintain functional dependencies 

*P = A; 
B = *P; 

A = *P; 
*P = B; 

or 



...and that cannot be assumed 

 Order of execution of independent load and 
stores A = *P; 

B = *Q; 
*R = C; 

 Order of execution of overlapping load and 
stores (preserving functional dependencies) 

1) A = *P; 
2) B = *(P + 4); 

1) *P = A; 
2) B = *P; or 

may be: 1  2 
    2  1  

    1 & 2 

may be:  1  2 

     1 & 2 (*P=B=A) 



Memory barriers (membar) 

 Class of instructions to enforce an order on 
memory operations 

 Low-level machine code operating on shared 
memory 

 Ensures that all operations preceding a 
membar are executed before all operations 
following the barrier 



Membar: example 

 Two CPUs, each one 
running a task using 
global variables a and b 

 Expected behavior: 

 CPU1 spins until a 
becomes ≠ 0 

 Then prints the b value 
stored by CPU2 

 Expected output: 33 

load eax, 0 
 
while (eax == 0)  
 load eax, [a] 
 
print [b] 

store 33, [b]  
store 1, [a] 

CPU 1: 

CPU 2: 



but... 

 When CPU2’s 
operations may be 
executed out-of-order: 

 a may be updated 
before b 

 CPU1 prints a 
meaningless value 

 Not acceptable! 

load eax, 0 
 
while (eax == 0)  
 load eax, [a] 
 
print [b] 

store 33, [b]  
store 1, [a] 

CPU 1: 

CPU 2: 



Solution: memory barrier 

 Use a memory barrier 
before CPU2’s second 
instruction 

 “store 33, [b]” will be 
always executed before 
“store 1, [a]” 

 Final output: 33 

load eax, 0 
 
while (eax == 0)  
 load eax, [a] 
 
print [b] 

store 33, [b]  
membar 
store 1, [a] 

CPU 1: 

CPU 2: 



Why/when using membars? 

 Needed when out-of-order execution or 
concurrent programming is used 

 Many tricks to improve performances 
 reordering 

 deferral and combination of memory operations; 

 speculative loads and branch prediction 

 various types of caching 

 Memory barriers allow overriding such tricks 

 Instruct the compiler and the CPU to 
restrict the order 



Varieties of memory barriers 

1. Write (or store) memory barriers 

2. Data dependency barriers 

3. Read (or load) memory barriers 

4. General memory barriers 

5. Implicit varieties: 

 LOCK operations 

 UNLOCK operations 



Write (or store) memory barrier 

 All STORE operations before the barrier will 
appear (to other system components) to 
happen before all STORE operations after the 
barrier 

 No effect on load operations 

 



Wr_membar: example 

 

 

A = 4; 
Wr_membar; 
P = &A; 

Later loads of *P (by the 
same processor) will obtain 
the updated value = 4 

No data dependency:  
later load operations referencing 
*P may obtain old values ≠ 4 

A = 4; 
P = &A; 

 To enforce partial order between both 
operations  insert a Wr_membar: 



However.. 

 Other processors can see the update of A 
after the update of P, due to caching: 

A = 4; 
Wr_membar; 
P = &A; 

L1 Cache 

Q = P; 
D = *Q; 

L1 Cache 

Main memory 

CPU2 CPU1 

{ A = 1, B = 2, C = 3, P = &B, Q = &C } 

A = 1 P = &B 

A = 4 

P = &A 



L1 Cache L1 Cache 

However.. 

 Other processors can see the update of A 
after the update of P, due to caching: 

A = 4; 
Wr_membar; 
P = &A; 

Q = P; 
D = *Q; 

Main memory 

CPU2 CPU1 

{ A = 1, B = 2, C = 3, P = &B, Q = &C } 

A = 4 P = &A 

= &A = 1 

P = &A 

A = 1 

Busy 

Inconsistency!!! 
Q = &A 
D = 1 



Solution: 

 Delay the read of *Q until its value has been 
updated in memory 

 The process running on CPU2 needs to 
synchronize with the write barrier on CPU1 

 Make sure that the target (*Q) of the second 
load (D=load *Q) is updated, before the 
address (Q) obtained by the first load 
(Q=load P) is accessed 



Data dependency barrier 

 Enforce a partial ordering on interdependent 
load operations 

 Does not have any effect on 

 stores 

 independent or overlapping loads 

 Weaker form of read memory barrier 



L1 Cache L1 Cache 

Example with DD_bar 

 CPU2 cache is forced to commit its coherency 
queue before processing further requests 

A = 4; 
Wr_membar; 
P = &A; 

Q = P; 
DD_bar; 
D = *Q; 

Main memory 

CPU2 CPU1 

{ A = 1, B = 2, C = 3, P = &B, Q = &C } 

A = 4 P = &A 

= &A = 4 

P = &A 

A = 1 

Busy 

A = 4 

Correct!!! 
Q = &A 
D = 4 



When using DD barriers? 

 Two or more consecutive loads with later 
loads depending on the result of previous 
ones 

 Typical situations: 
 the first load retrieves the address to which the 

second load will be directed 

 the first load retrieves a number which is then 
used to calculate the index for an array  

 A data dependency barrier would be required 
to make sure that the target of the second 
load is updated before the address obtained 
by the first load is accessed 



More in detail.. 

 Definition from Linux kernel manual 

 “A data dependency barrier issued by the CPU 
under consideration guarantees that for any load 
preceding it, if that load touches one of a 
sequence of stores from another CPU, then by the 
time the barrier completes, the effects of all the 
stores prior to that touched by the load will be 
perceptible to any loads issued after the data 
dependency barrier”. 



Let’s try to understand.. 

 CPUs in the system can be viewed as committing 
sequences of stores to memory, that other CPU can 
then perceive 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = 3; 
STORE D = 4; 
STORE E = 5; 

L1 Cache 

… 

L1 Cache 

Main memory 

CPUx CPU1 

… 

L1 Cache 

CPU2 

… 



Sequence of memory ops 

CPU1 

B=2 

ti
m

e
lin

e
 

A=1 

C=3 

D=4 

… 

… 

Write barrier 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = 3; 
STORE D = 4; 
STORE E = 5; 

Sequence in which stores are  
committed to memory by CPU1 

CPUx 

E=5 

Events perceptible to the  
rest of the system 



Example without DD_bar 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = &B; 
STORE D = 4; 

L1 Cache 

LOAD X; 
LOAD C; 
LOAD *C; 

L1 Cache 

Main memory 

CPU2 
CPU1 

Initially: { B = 7; X = 9; Y = 8; C = &Y } 



Sequence of ops without DD_bar 

CPU1 

B=2 
ti
m

e
lin

e
 

A=1 

C=&B 

D=4 

… 

… 

Write barrier 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = &B; 
STORE D = 4; 

CPU2 

LOAD X; 
LOAD C; 
LOAD *C; C=&Y 

B=7 

Initially: B = 7; X = 9; Y = 8; C = &Y 

B=2 

A=1 

B=2 

A=1 

B=2 

D=4 

A=1 

B=2 

D=4 

A=1 

B=2 

C=&B 

X=9 D=4 

A=1 

B=2 Y=8 

Incorrect 
perception of B 
(7 instead of 2) B=2 



Inserting a DD_bar 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = &B; 
STORE D = 4; 

L1 Cache 

LOAD X; 
LOAD C; 
DD_bar; 
LOAD *C; 

L1 Cache 

Main memory 

CPU2 
CPU1 

Initially: { B = 7; X = 9; Y = 8; C = &Y } 



C=&B 

Sequence of ops with DD_bar 

CPU1 

ti
m

e
lin

e
 

D=4 

… 

… 

Write barrier 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = &B; 
STORE D = 4; 

CPU2 

LOAD X; 
LOAD C; 
DD_bar; 
LOAD *C; C=&Y 

B=7 

Initially: { B = 7; X = 9; Y = 8; C = &Y } 

D=4 D=4 

B=2 

C=&B 

X=9 D=4 

A=1 

Y=8 

CPU2 reads 
updated value  
*C = B = 2 

B=2 

DD barrier 



C=&B 

Sequence of ops with DD_bar 

CPU1 

ti
m

e
lin

e
 

D=4 

… 

… 

Write barrier 

STORE A = 1; 
STORE B = 2; 
Wr_bar; 
STORE C = &B; 
STORE D = 4; 

CPU2 

LOAD X; 
LOAD C; 
DD_bar; 
LOAD *C; C=&Y 

B=7 

Initially: { B = 7; X = 9; Y = 8; C = &Y } 

D=4 D=4 

B=2 

C=&B 

X=9 D=4 

A=1 

Y=8 

B=2 

DD barrier 

“A data dependency barrier guarantees 
that for any load preceding it, if that load 
touches one of a sequence of stores from 
another CPU, then by the time the barrier 
completes, the effects of all the stores prior 
to that touched by the load will be 
perceptible to any load issued after the 
data dependency barrier”. 



Example: DD_bar and arrays 

M[1] = 4; 
Wr_bar; 
J = 1; 

L1 Cache 

K = J; 
DD_bar; 
D = M[K]; 

L1 Cache 

Main memory 

CPU2 CPU1 

Initially: { M[1] = 2, M[3] = 3, J = 0, K = 3 }  



Read (or load) memory barriers 

 All LOAD operations before the barrier will 
appear (to other system components) to 
happen before all LOAD operations after the 
barrier 

 No effect on store operations 

 Stronger than data dependency barrier 
 DD_bar applies only to dependent loads 

 Rd_bar applies to all load operations  

 Therefore, a Rd_bar implies a DD_bar 



Example (without Rd_bar) 

STORE A = 1; 
Wr_bar; 
STORE B = 2; 

L1 Cache 

LOAD B; 
LOAD A; 

L1 Cache 

Main memory 

CPU2 CPU1 

Initially: { A = 0; B = 9 } 

Independent 
load ops 



Sequence of ops without Rd_bar 

CPU1 

ti
m

e
lin

e
 

A=1 

Write barrier 

STORE A = 1; 
Wr_bar; 
STORE B = 2; 

CPU2 

B=9 

A=0 

B=2 B=2 

A=0 

Incorrect 
perception of A 
(0 instead of 1) A=1 

Initially: { A = 0; B = 9 } 

LOAD B; 
LOAD A; 



Inserting a Rd_bar 

STORE A = 1; 
Wr_bar; 
STORE B = 2; 

L1 Cache 

LOAD B; 
Rd_bar; 
LOAD A; 

L1 Cache 

Main memory 

CPU2 
CPU1 

Initially: { A = 0; B = 9 } 



Sequence of ops with Rd_bar 

CPU1 

ti
m

e
lin

e
 

A=1 

Write barrier 

STORE A = 1; 
Wr_bar; 
STORE B = 2; 

CPU2 

B=9 

A=0 

B=2 B=2 

A=0 

A=1 

Initially: { A = 0; B = 9 } 

LOAD B; 
Rd_bar; 
LOAD A; 

Rd barrier 

CPU2 reads 
updated value  

A = 1 



Rd_bar vs DD_bar 

 A read barrier has to be used instead of a 
data dependency barrier when  

 there is no data dependency between the 
operations involved. E.g.,  

or 

 there is a control dependency between the 
operations involved. E.g.,  

LOAD B; 
LOAD A; 

Q = &A; 
if (C) 
    Q = &B; 
<BARRIER> 
X = *Q 

Here we need a Rd_bar!  
A DD_bar is not sufficient since 
there is a control dependency 
between “Q=&B” and “X=*Q” 



Pairing memory barriers 

 A write barrier needs a data dependency 
barrier or a read barrier, to work properly 

 The partial ordering enforced by a Wr_bar on 
a CPU can be perceived by other CPUs only if 
they use a paired DD_bar (or Rd_bar) 

 Typically the stores before the Wr_bar match 
the loads after the Rd_bar (or DD_bar) and 
viceversa A = 1; 

B = 2; 
Wr_bar;  
C = 3; 
D = 4; 

Z = C; 
W = D; 
Rd_bar; 
X = A; 
Y = B; 



General memory barriers 

 All LOAD and STORE operations before the 
barrier will appear (to other system 
components) to happen before all LOAD and 
STORE operations after the barrier 

 Combine the functionalities of Wr_bar and 
Rd_bar 

 Therefore, a Full_bar implies both a Wr_bar and a 
Rd_bar 



Linux kernel barriers 

 Compiler barriers 

 barrier(); 

 CPU memory barriers 

 Mandatory barriers: mb(); wmb(); rmb(); 
read_barrier_depends(); 

 SMP conditional barriers: smp_mb(); smp_wmb(); 
smp_rmb(); smp_read_barrier_depends(); 

 MMIO write barriers 

 mmiowb(); 



Implicit kind of barriers 

 LOCK and UNLOCK operations 

 They are unidirectional barriers that are 
permeable to read and write accesses only in 
one way 

 Used to delimit Critical Sections of code to 
which a process need exclusive access 



Critical Section (CS) 

 A shared resource (data structure or device) 
that must be exclusively accessed by one 
thread 

 Synchronization mechanism required at 
Critical Section boundaries 

 On uni-processors can be implemented 
avoiding context switches (e.g., disabling 
interrupts and preemptions) 

 On multi-processors this is no more valid 



Lock operations 

 All LOAD and STORE operations after the lock 
will appear (to other system components) to 
happen after the lock 

 Memory operations occurring before the lock 
may appear to happen after it completes 

... 

... 
 
 
... 
... 

LOCK 



Unlock operations 

 All LOAD and STORE operations before the 
unlock will appear (to other system 
components) to happen after the unlock 

 Memory operations occurring before the unlock 
may appear to happen after it completes 

... 

... 
 
 
... 
... 

UNLOCK 



Critical section implementation 

 Lock and Unlock 
operations are 
almost always 
paired 

 They delimit 
Critical Sections 

 When lock/unlock 
are used, no need 
for explicit 
memory barriers  

UNLOCK 

LOCK 

Critical Section 



Question 

 Is a LOCK followed by an UNLOCK equivalent 
to a full memory barrier? 

LOCK 

= = 
? 

Code… 

Code… 

Code… 

Code… 

UNLOCK 
FULL_BAR 



Lock/Unlock vs Full_bar 

ti
m

e
lin

e
 

*A = a; 
LOCK; 
UNLOCK; 
*B = b; 

Store *B 

LOCK 

UNLOCK 

Store *A 

tim
e
lin

e
 

Store *B 

FULL_BAR 

Store *A 
*A = a; 
FULL_BAR; 
*B = b; 



Question 

 Is an UNLOCK followed by a LOCK equivalent 
to a full memory barrier? 

UNLOCK 

= = 
? 

Code… 

Code… 

Code… 

Code… 

LOCK 
FULL_BAR 



Unlock/Lock vs Full_bar 

ti
m

e
lin

e
 

*A = a; 
UNLOCK; 
LOCK; 
*B = b; 

Store *B 

UNLOCK 

LOCK 

Store *A 
tim

e
lin

e
 

Store *B 

FULL_BAR 

Store *A 
*A = a; 
FULL_BAR; 
*B = b; 

= = 



Example 1 

Other CPUs might see, for 
example: 

 *E, LOCK M, LOCK Q, *G, 
*C, *F, *A, *B, UNLOCK Q, 
*D, *H, UNLOCK M 

 

But they will never see: 

 *B, *C or *D before LOCK M 

 *A, *B or *C after UNLOCK M 

 *F, *G or *H before LOCK Q 

 *E, *F or *G after UNLOCK Q 

*A = a; 
LOCK M; 
*B = b; 
*C = c; 
UNLOCK M; 
*D = d; 

*E = e; 
LOCK Q; 
*F = f; 
*G = g; 
UNLOCK Q; 
*H = h; 

CPU1 CPU2 

Different spin locks M and Q 

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1263


Example 2 

CPU1 CPU2 

Same spin lock M 

Other CPUs might see, for 
example: 

 *E, LOCK M[1], *C, *B, *A, 
UNLOCK M[1], LOCK M[2], 
*H, *F, *G, UNLOCK M[2], *D  

 
But, assuming CPU1 gets the 

lock first, they will never see: 
 *B, *C, *D, *F, *G or *H 

before LOCK M[1] 
 *A, *B or *C  
 after UNLOCK M[1] 
 *F, *G or *H  
 before LOCK M[2] 
 *A, *B, *C, *E, *F or *G 
 after UNLOCK M[2] 

[1] 

[1] 

[2] 

[2] 

*A = a; 
LOCK M; 
*B = b; 
*C = c; 
UNLOCK M; 
*D = d; 

*E = e; 
LOCK M; 
*F = f; 
*G = g; 
UNLOCK M; 
*H = h; 

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1291
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1292


Advisory vs mandatory locks 

 Advisory lock 

 Each thread cooperates by acquiring the lock 
before accessing the protected resource 

 Mandatory lock 

 Attempting unauthorized access to a locked 
resource forces an exception 



Lock implementation 

 For single processors the exclusive access to 
a shared resource can be implemented 
disabling interrupts 

 For multiprocessors this is not enough! 

 Hardware support required for efficient 
implementation 

 Atomic instruction(s) needed: test if lock is 
free and acquire the lock in a single atomic 
operation 



Read-Modify-Write (RMW) 

 RMW instructions atomically do both the 
following operations: 

 read a memory location 

and 

 write a new value into it simultaneously (either a 
completely new value or some function of the 
previous value)  

 Example: Test-and-set(); Compare-and-
swap(); Fetch-and-add(); Dec_and_test(); 
etc. 



Why atomicity is required? 

 Consider two processes executing the 
following piece of code to acquire the same 
lock: 

 

 

 If both tasks test the “lock” value at the 

same time, they will both detect that the lock 
is free  they will both acquire the lock! 

if (lock == 0)   
 lock = process_PID; 

The access to the CS is not exclusive 



Without atomic locking  
ti
m

e
lin

e
 

LOAD R1lock 

STORE lockPID1 

if (lock == 0)   
 lock = process_PID; 

if (lock == 0)   
 lock = process_PID; 

Thread 1 Thread 2 

ti
m

e
lin

e
 

LOAD R1lock 

STORE lockPID2 

Since R1 = 0 
acquire_lock 

Since R1 = 0 
acquire_lock 

CS code 

CS code 



With atomic locking  
ti
m

e
lin

e
 

LOAD R1lock 

STORE lockPID1 

if (test_and_set(lock,0,PID1)) 
 <CS code> 

if (test_and_set(lock,0,PID2)) 
 <CS code> 

Thread 1 Thread 2 

ti
m

e
lin

e
 

LOAD R1lock 

Since R1 = 0 
acquire_lock 

Since R1 = PID1 
do_something_else 

CS code 

atomic Bus locked 



Atomic instructions in Linux 

 Read-Modify-Write instructions: 

 xchg(); cmpxchg(); atomic_cmpxchg(); 

 atomic_[inc|dec|add|sub]_return(); 

 atomic_[inc|dec|sub]_and_test(); 

 atomic_add_[negative|unless](); 

 test_and_[set|clear|change]_bit(); 

 Other atomic instructions: 

 atomic_set(); [set|clear|change]_bit(); 

 atomic_[inc|dec|add|sub](); 



Atomic operations in Linux 

 Are executed without being interrupted by 
other operations 

 Atomic operations that modify some state in 
memory and return information about the 
state (old or new) imply an SMP-conditional 
general memory barrier  (smp_mb()) on each 
side of the actual operation  

 E.g., cmpxchg(); atomic_dec_and_test(); 
test_and_set_bit(); ... 



Otherwise... 

 Round-robin 

 Strict alternation: each thread can lock the 
resource at its turn 

 Dekker’s algorithm 

 Limited to two processes and busy waiting 

 Peterson’s algorithm 

 Originally formulated for two processes, can be 
generalized to more than two 



Dekker’s algorithm 

 Uses two flags (f0 and f1) to indicate 
“intention to enter”, and a turn variable 

f0 = true  
while f1 { 
 if turn ≠ 0 { 
  f0 = false 
  while turn ≠ 0 { }                                    
             f0 = true  
 } 
} 
// … Critical Section … 

turn = 1 
f0 = false  

Initially, f0 = false; f1 = false; turn = 0 (or 1) 
Thread1 

f1 = true  
while f0 { 
 if turn ≠ 0 { 
  f1 = false 
  while turn ≠ 1 { }            
             f1 = true  
 } 
} 
// … Critical Section … 

turn = 0 
f1 = false  

Thread2 



Peterson’s algorithm 

 Uses two flags (f0 and f1) to indicate 
“intention to enter”, and a turn variable 

f0 = true  
turn = 1 
while (f1 && turn==1) {} 
 
// … Critical Section … 

 
f0 = false  

Initially, f0 = false; f1 = false; turn = 0 (or 1) 

Thread1 

f1 = true  
turn = 0 
while (f0 && turn==0) {} 
 
// … Critical Section … 

 
f1 = false  

Thread2 



Considerations 

 Dekker’s and Peterson’s algorithm would 

need memory barriers when used on 
processors with instruction reordering 

 More efficient solutions are provided using 
atomic operations 



Key design aspects for locks 

 Overhead 

 extra resources used just for the implementation 
of the lock  memory space, time for lock 

initialization/destruction and acquire/release 

 Contention 

 number of threads that can concurrently request 
the lock  a locked shared by many processes 

implies a larger blocking probability 

 Granularity 

 size of the protected region  course vs fine 

granularity 



Lock granularity 

 Coarse granularity 

 less overhead, but more lock contention 

 Fine granularity 

 larger number of “faster” locks 

 larger system overhead 

 higher risk of deadlocks 

 Example: locking a whole table, a row, or a 
single entry 



Risks related to locking 

 Blocking time  starvation, lack of fairness 

 Locking tasks stalls/blocks/dies/loops 

 Error-prone due to crossed dependencies 
difficult to detect for larger program sizes 

 Deadlocks, livelocks 

 Priority inversion 

 Bugs difficult to reproduce 



Linux kernel locking constructs 

 Spin locks 

 R/W spin locks 

 Mutexes 

 Semaphores 

 R/W semaphores 

 RCU 

All require atomic instruction support 

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1111
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1112
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1113
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1114
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1115


Spinlock 

 A thread waits (“spins”) until the lock is 

available 

 Wasteful if locks are held for a long time 

 On a single processor, many time quanta may be 
wasted due to spinning on a resource locked by a 
preempted thread 

 Efficient for short locks  avoid process re-

scheduling 



Spinlock: example 

 The lock variable is 1 when 
locked, 0 when unlocked 

 “xchg eax, [lock]” atomically 

swap the EAX register with 
the lock variable 

 “test eax, eax” sets the zero 

flag if EAX = 0 

 If zero flag is set, the lock 
has been acquired 

 Otherwise spin 

lock: 
 dd 0 
 
spin_lock: 
 mov  eax, 1 
 
loop: 
 xchg eax, [lock] 
 test eax, eax 
 jnz loop 
 ret 



Spinlock: unlock 

 To release the lock, reset the 
lock variable to zero 

 

lock: 
 dd 0 
 
spin_unlock: 
 mov  eax, 0 
 xchg eax, [lock] 
 ret 
 
 
 
 



Spinlock and interrupts 

 When an interrupt handler can access the 
lock as well, the following situation might 
occurr 

spin_lock(&lock); 
… 

 

… 

spin_lock(&lock); 

Interrupt comes in 

Process on CPU1 

DEADLOCK!!! 
Waits for the release of the 
lock which will never happen 



Solution: disable interrupt 

 Disable interrupts 

spin_lock(&lock); 
cli(); 
… 

sti(); 
spin_unlock(&lock) 

Process on CPU1 

spin_lock(&lock); 
… 

spin_unlock(&lock); 

Interrupt arrival 

handling 
deferred 



Spinlock and interrupts 

 Only local interrupts need to be disabled  
not necessary to disable interrupts on other 
CPUs 

 

 

 

 

 

 In Linux 
 xxx_lock_irqsave(...) 

 xxx_unlock_irqrestore(...) 

spin_lock(&lock); 
… 

<continue exec> 
spin_unlock(&lock) 

Process on CPU1 

spin_lock(&lock); 
… 

spin_unlock(&lock); 

Interrupt arrival 
on CPU2 



Reader-Writer spinlocks 

 Allow multiple readers to be in the same 
critical section at once 

 Do not allow more than one single writer at a 
time 

 Usually, there is no need to read a shared 
resource with an exclusive access to it... 

 ... as long as no other process modifies it! 



R/W spin locks in Linux: read  

 Readers acquire/release the lock with  

 read_lock(&xxx_lock, flags);  

 read_unlock(&xxx_lock, flags); 

 If no process is holding a write lock on the 
same resource, the read lock can be acquired 

 The only result will be an increment/decrement 
in the counter of the processes currently 
holding the lock 



R/W spin locks in Linux: write 

 Writer acquires/releases the lock with 

 write_lock(&xxx_lock, flags); 

 write_unlock(&xxx_lock, flags);  

 It can acquire the lock only when there is no 
process holding a (read or write) lock  

check the lock_counter 

 When a process is holding a write lock, no 
other process can acquire the lock 



Considerations 

 R/W spin locks are faster than normal spin 
locks, allowing more readers to 
contemporarily access the resource 

 If we know that interrupts will only need read 
locks, possible to use  

 read_lock(&lock) for read accesses 

and 

 write_lock_irqsave(&lock, flags) for write accesses 



Busy-wait 

 Busy-wait is an anti-pattern associated to 
“spinning” before entering a critical section 

 Waste of CPU cycles 

 May delay subsequent requests, reducing the 
spinning frequency 

 Better to block the process on events like 
lock acquisitions, timers, I/O availability, or 
signals  the blocked thread is put in 

sleeping state and other threads are executed 



Locking strategies 

 Instead of “spinning”, a more efficient 
method is using semaphores with blocking 

 Thread must acquire a semaphore before 
entering a CS 

 Block the execution of the thread requesting 
the lock until it is allowed to acquire the 
semaphore 

 Other threads can execute other code/critical 
sections 



Semaphores 

 A protected variable to restrict the access to 
shared resources 

 Implemented by a counter for a set of 
available resource  counting semaphore 

 Binary semaphores are called mutexes 

 Prevents race conditions but not deadlocks 



Non-blocking synchronization 

 Overcomes the disadvantages of using locks 

 Lock-free 

 a thread cannot lock up: every step it takes brings 
progress to the system 

 Wait-free 

 a thread can complete any operation in a finite 
number of steps, regardless of other threads  

 All wait-free algorithms are lock-free (but not 
viceversa) 

 No semaphores nor mutexes 



Lock-free algorithms 

 Still need atomic instructions like Test-and-
set, Compare-and-swap, etc. 

 Example: 
CAS(addr, old, new) 
{  
atomic 
 if (*addr == old) 
 then {*addr = new ; 
  return true} 
 else return false 
endatomic  
} 



Example: bank account 

 Each thread represents a teller trying to make 
a deposit onto the same account 

Thread1 Thread2 

Bank account 

 Need to synchronize simultaneous deposits to 
the account 



Write conflict 

 If both threads simultaneously read the 
account  a transaction is lost! 

deposit(money) 
{ 
 A = read_account(); 
 A = A + money; 
 write_account(A); 
} 

deposit(money) 
{ 
 A = read_account(); 
 A = A + money; 
 write_account(A); 
} 

Thread 1 Thread 2 



Locking solution 

 Each teller has to acquire a lock before doing 
a deposit: 

deposit(money) 
{  
 lock(account); 
 A = read_account(); 
 A = A + money; 
 write_account(A); 
 unlock(account);  
} 

 Implies locking overhead 



Lock-free solution 

 Use Compare_And_Swap(address,old,new): 

 deposit(money) 
{  
 do{ 
  A = read_account(); 
  B = A + money; 
 } 
 while (! CAS(account, A, B) )  
} 

 Lock-free but not wait-free: other tellers may 
keep writing new values  failing teller tries 

again indefinitely 



Reducing contention 

 To reduce traffic on the bus due to repeated 
reads, failing threads may wait some time 
before trying another update  

 constant delay 

 incremental delay 

 random delay 

 



ABA problem 

 Arises when a thread reads a location a 
second time to detect if anything has 
changed from the first read 

 But another thread could have modified and 
restored the value at that location, e.g. 

 Thread 1 reads A from a shared memory location 

 Thread 2 modifies the same location from A to B 
and back to A 

 Thread 1 reads again the value A and assumes 
nothing changes  ERROR!!! 



ABA problem with lock-free 

 Push and Pop function of a stack list 

Obj* Pop()  
{ 
      while(1) { 
 Obj* ret = top; 
 if (!ret) return NULL; 
 Obj* next = ret->next; 
 if (CAS(&top, ret, next))  
  return ret; 
      } 
} 

void Push(Obj* obj)  
{ 
     while(1) { 
 Obj* next = top; 
 obj->next = next; 
 if (CAS(&top, next, obj))  
  return; 
      } 
} 
 



ABA problem with CAS 

 Suppose initially the stack contains 

top  A  B  C 

 Suppose Thread1 is preempted during the 
Pop() by Thread2 

Thread1 
{ 
 Pop();  
} 

Thread2 
{ 
 Pop();  
 Pop(); 
 Push(A); 
} 

top  A  C 
top  C 
top  B  C 



ABA problem with CAS 

 Thread1’s Pop operation: 

Obj* Pop()  
{ 
      while(1) { 
 Obj* ret = top;  
 if (!ret) return NULL; 
 Obj* next = ret->next; 
  
//--- PREEMPTED BY THREAD2--- 
 
 if (CAS(&top, ret, next))  
  return ret; 
      } 
} 

ret  A 

next  B 

top  A  C 

CAS succeeds but leaves 
the stack in wrong state: 

top  ???! (B was popped 
by Thread2) 



Transactional memory 

 Lock-free approach that is able to deal with 
the ABA problem 

 Allows a group of load and store instructions 
to execute in an atomic way 

 Load-Link/Store-Conditional 

 Software Transactional Memory (STM) 



Load-Link/Store-Conditional 

 LL works like a normal load from a memory 
location 

 A subsequent SC to the same memory 
location will store a new value only if no 
updates have occurred to that location since 
the load-link, otherwise it fails 

 SC fails even if the value read by LL has since 
been updated and then restored (ABA 
problem)  LL/SC is stronger than read/CAS 



Software Transactional Memory 
(STM) 

 Optimistic behavior: threads complete 
modifications to shared memory regardless of 
other threads 

 They record every read and write in a log 

 Each reader verifies that other threads have 
not concurrently made changes to memory 
that it accessed in the past 

 commit permanent changes if validation is 
successful 

 otherwise abort, undoing all its prior changes 



STM: considerations 

 The conflict control is placed on the reader 
instead of the writer 

 Increased concurrency: no need to wait for 
access to a resource 

 Increased overhead in case of failing 

 Good performance in practice  conflicts 

arise rarely in practice 



Read-Copy Update (RCU) 

 Split updates into “removal” and 
“reclamation” phases 

 The removal phase 

 removes references to data items within a data 
structure (possibly by replacing them with 
references to new versions of these data items) 

 can run concurrently with readers which will see 
either the old or the new version of the data 
structure rather than a partially updated reference  



RCU 

 The reclamation phase 

 frees the data items removed from the data 
structure during the removal phase 

 must not start until readers no longer hold 
references to those data items  

 reclaiming can be done either by blocking or by 
registering a callback  

 No need to consider readers starting after the 
removal phase  they are unable to gain a 

reference to the removed data items 



RCU typical sequence 

1. Remove pointers to a data structure  later 

readers cannot gain a reference to it 

2. Wait for all previous readers to complete 
their RCU read-side critical sections  

3. Reclaim the data structure (e.g., using kfree 
in the Linux kernel) 

top 



Advantages of RCU 

 Wait-free reads 

 RCU readers use much lighter-weight 
synchronization  low overhead 

 Reclamation phase may by done by entirely 
different thread  e.g., Linux directory entry 

cache 

 

 



Where does the name come from? 

 Read-Copy Update 

 A thread wishing to update a linked structure 
in place does the following 

 creates a new structure, copying the data from 
the old structure into the new one 

 modifies the new, copied, structure 

 updates the pointer to refer to the new structure 

 sleeps until there are no readers left  

 Therefore, an RCU protected structure is 
Read concurrently with a thread Copying in 
order to do an Update  



Linux RCU implementation 

 RCU API 

 rcu_read_lock()  

 rcu_read_unlock()  

 synchronize_rcu() / call_rcu()  

 rcu_assign_pointer()  

 rcu_dereference()  



Conclusion 

 Sharing data on multicore platforms requires 
attention 

 Possible to choose among different constructs 
(spinlocks, semaphores, R/W locks, RCU, …) 

 Using proper mechanism it is possible to 
exploit the power of multicore 

 Start thinking parallel! 


