
Synchronization

Terminology

 Threads

 Processes (or tasks)
 Independent

 Considerable state info

 Separate address space

 Resources
 Memory, file handles,

 sockets, device handles

 Owned by processes

Threads and processes
 Thread of a same process share the same

resources

 Processes can share resources only through
explicit methods

 The only resources exclusively owned by a
thread are the thread stack, register status
and thread-local storage (if any)

Scheduling

 A scheduler is responsible to allocate tasks
and threads to the available computing
resources

 Various kind of scheduling algorithms
 Best-effort  minimize makespan

 Real-Time  meet deadlines

 … other metrics to minimize

 Preemption and context changes

 Access to shared resources

Multithreading
 Classic multithreading on single processor

systems required Time Division Multiplexing
(TDM)

 Time driven

 Event driven

 Multiprocessors  different threads and

processes can run on different CPUs

 Multithreading is easier (“native”) on

multicore platforms

 But scheduling requires more attention

Multithreading issues

 Race conditions

 Starvation, priority inversion, deadlock,
livelock

 Mamihlapinatapai

 Synchronization (mutex, lock)

 Atomic execution (semaphores)

 Communication:

 shared-memory (requires locking)

 message-passing (slower but easier)

Different kinds of Parallelisms

 Instruction Level Parallelism (ILP)

 Data Level Parallelism (DLP)

 Thread Level Parallelism (TLP)

Instruction Level Parallelism (ILP)
 Execute multiple instruction per clock cycle

 Each functional unit on a core is an execution
resource within a single CPU:

 Arithmetic Logic Unit (ALU)

 Floating Point Unit (FPU)

 bit shifter, multiplier, etc.

 Need to solve data dependencies

Data dependency

 Consider the sequential code:

1. e = a + b

2. f = c + d

3. g = e * f

 Operation 3. depends on the results of
operations 1. and 2.

 Cannot execute 3. before 1. and 2. are
completed

How to “parallelize” software?

 Parallelism can be extracted from ordinary
programs

 At run-time (by complex specific HW)

 At compile-time (simplifying CPU design and
improving run-time performances)

 Degree of ILP is application dependent

ILP: superscalar architectures
 Data dependency check in HW

 Complex mechanisms

 power, die-space and time consuming

 Problematic when

 code difficult to predict

 Intructions have many interdependencies

Superscalar pipelining

(5x) stage pipelining
(2x) Superscalar execution

ILP optimizations

 Instruction pipelining

 Superscalar execution

 Out-of-order execution
 deferred memory accesses

 combined load and store

 Speculative execution
 branch prediction,

 speculative load

 …

Processor front and back end
 Intel describes its processors having

 “in-order front end”

 “out-of-order execution engine”

ILP: compile-time techniques

 Compiler decides which operations can run in parallel

 Removes the complexity of instruction scheduling
from HW to SW

 New instruction sets that explicitly encode multiple
independent operations per instruction

 Very Long Instruction Word (VLIW): one instruction encodes
multiple operations (one for each execution unit)

 Explicitly Parallel Instruction Computing (EPIC): adds
features to VLIW (cache prefetching instructions, ...)

Data Level Parallelism (DLP)
 Higher parallelism than superscalar architecture

 SIMD instructions (Single Instruction, Multiple Data)
 Intel’s MMX, SSE, SSE2, SSE3, SSE3, SSSE3, SSE4, AVX

 AMD’s 3DNow!, SSE5

 ARM’s NEON, IBM’s AltiVec and SPE, etc.

 Graphic cards (GPU)

 Cell Processor’s SPU

 Useful when the same operation has to be applied to
a large set of data (i.e., multimedia, graphic
operations on pixels, etc.)

 Multiple data are read and/or modified at the same
same

Thread Level Parallelism (TLP)

 Higher level parallelism than ILP

 Different kinds of TLP

 Superthreading

 Hyperthreading or Symultaneous MultiThreading
(SMT)

 Needs superscalar processor

 Chip-level MultiProcessing (CMP)

 Needs multicore architecture

 Combinations of the above solutions

Superthreading

 Temporal Multithreading (fine- or coarse-
grained)  when processor idle, execute

instruction of another thread

 Makes better use of the computing resources
when a thread is blocked

 Requires adequate hardware support to
minimize context change overhead

Hyperthreading

 Simultaneous MultiThreading (SMT)

 Introduced in late 90s: Intel’s Pentium 4

 Execute instructions from multiple threads
simultaneously  needs superscalar support

 Energy inefficient

 Increases cache thrashing by 42%, whereas dual
core results in a 37% decrease

4 running programs

Only the red program
is executing

Up to 4 instr/clock cycle

7 functional units

Pipeline bubbles

Single-threaded CPU

Super-threading (time-slice
multithreading)

Multithreaded processor:
able to handle more than

one thread at a time

All instructions in a pipeline
stage must come from

the same thread

Interleaved execution of
different threads (helps

masking memory latency)

Hyper-threading (Simultaneous
MultiThreading)

Instructions in a pipeline
stage may come from

different threads

Interleaved execution of
different threads (helps

masking memory latency)

Hyper-threading (SMT)

 From OS perspective: many “logical”

processors

 Average ILP for a thread = 2.5 instr/cycle

 Pentium 4 issues at most 3 instr/cycle to the
execution core

 Hyperthreaded processor can exploit
parallelism beyond a single thread ILP

But..

 SMT can be worse than non-SMT approaches

 A thread monopolizing an execution unit for many
consecutive pipeline stages can stall the available
functional units (that could have been used by
other threads)

 Cache thrashing problem

 Different logical processor can execute two
threads accessing completely different memory
areas

Not a problem for Multicores

 A smart SMT-aware OS running on a
multicore would schedule two different tasks
on different processors  resource

contention is minimized

Summary

 Out-of-order execution problems on multicore
platforms

 Data dependencies

 Race conditions

 Memory barriers

 Locking mechanisms

 Spinlocks, semaphores, mutexes, RCU

Introduction: execution ordering

 A processor can execute instructions in any
order (or in parallel), provided it maintains
program causality with respect to itself

 The compiler may reorder instructions in
many ways, provided causality maintainance

 Some CPUs are more constrained than others

 E.g., i386, x86_64, UltraSPARC are more
constrained than PowerPC, Alpha, etc.

 Linux assumes the DEC Alpha execution ordering
 the most relaxed one

Out-of-order execution

 Loads are more likely to need to be
completed immediately

 Stores are often deferred

 Loads may be done speculatively, leading to
discarded results

 Order of memory accesses may be
rearranged to better use buses and caches

 Multiple loads and stores can be parallelized

Optimizations

 CPU or Compiler optimizations: overlapping
instructions may be replaced

 E.g., two consecutive loads to the same
value/register

 A load operation may be performed entirely inside
the CPU

1) A = V;
2) A = W;

1) *P = A;
2) B = *P;

A = W;

1) *P = A;
2) B = A;

Cache coherency is not enough

 While the caches are expected to be

coherent, there's no guarantee that that
coherency will be ordered

 Whilst changes made on one CPU will

eventually become visible on all CPUs, there's
no guarantee that they will become apparent
in the same order on those other CPUs

Causality maintanance

 If an instruction in the stream depends on an
earlier instruction, then that earlier instruction
must be “sufficiently complete” before the

later instruction may proceed

 Need to analyse the dependencies between
operations

Dependencies

 A “dependency” is a situation in which an

instruction refers to the data of a preceding
instruction

 Data dependencies

 Read after Write

 Write after Read

 Write after Write

 Control dependencies

Read after Write

 True (or flow) dependence:

 an instruction depends on the result of a previous
instruction

 Example:

1) A = 3;
2) B = A + 1;

A is modified by the first
instruction and used in the

second one

It is not possible to use
instruction level parallelism

Write after Read

 Antidependence:

 an instruction requires a value that is updated by
a later instruction

 Example:

1) B = A + 1;
2) A = 3;

A is modified by the second
instruction and used by the

first one

It is not possible to use
instruction level parallelism

Write after Write

 Output dependence:

 two instructions modify the same resource

 Example:

1) A = 4;
2) A = 5;

A is modified by both
instructions

It is not possible to use
instruction level parallelism

Other dependencies

 Read after Read a.k.a Input dependency

 two instructions read the same resource

 Control dependency

 instruction execution depends on a previous
instruction  e.g., conditional statements

1) B = A + 1;
2) C = A + 2;

A is read by both instructions

ILP is possible!

if (x == true)
A = 5;

“A = 5” executed only if x is

true in the previous instruction

Considerations on dependencies

 No need to consider dependencies when a strict
sequential execution model is used

 Otherwise, dependence analysis is needed for

 CPU exploiting instruction level parallelism

 out-of-order execution

 parallelizing compiler

 Need to enforce execution-order constraints to limit
the ILP of a system

 Usually automatically solved by compiler/HW

 Concerns the behavior of a single thread

More than dependencies...

 When more threads are concurrently executed 
additional “dependency” problems

 Instructions from different tasks/threads may need to
access the same global resources

 Problems similar to dependency problems, but more
difficult to detect/solve

 Explicit programmer intervention is needed

 Need to synchronize the accesses to shared
resources

Synchronization mechanisms

 Process synchronization
 Barrier

 Lock/semaphore

 Critical sections

 Thread join

 Mutex

 Non-blocking synchronization

 Data synchronization
 Keep multiple copies of a set of data coherent

with one another

 E.g., cache coherency, cluster file systems, RAID,
etc.

Process synchronization problems

 Race conditions

 Deadlock

 Livelock

 Starvation

 Lack of fairness

Race conditions

 More tasks read/modify the same global
variable

 “Race” for which task modifies the global

value first

 Output depends on the particular sequence of
task operations

 Non-deterministic behavior

Race conditions: example 1

global int A = 0

task T1 ()
 A = A + 1
 print A
end task

task T2 ()
 A = A + 1
 print A
end task

 Two concurrent tasks T1 and
T2 are activated

 Both tasks modify the same
global variable A

 Expected behavior:

 T1 reads 0

 T1 increments A to 1

 T1 prints 1

 T2 reads 1

 T2 increments A to 2

 T2 prints 2

 Expected final output = 2

Race conditions: example 1

global int A = 0

task T1 ()
 A = A + 1
 print A
end task

task T2 ()
 A = A + 1
 print A
end task

 Problem if operation
“A=A+1” is not performed

atomically

 Possible behavior:

 T1 reads 0

 T2 reads 0

 T1 increments A to 1

 T2 increments A to 1

 T1 prints 1

 T2 prints 1

 Final output = 1 !!!

Race conditions: example 2

A = 3;
B = 4;

x = A;
y = B;

Two global variables
{ A = 1; B = 2 }

CPU1 CPU2

 n! = 24 different combinations for memory
accesses

 4 different outputs:

 (x,y) = (1,2); (1,4); (3,2); (3,4)

with out-of-
order execution

Race conditions: example 3

B = 4;
P = &B;

Q = P;
D = *Q;

Five global variables
{ A = 1, B = 2, C = 3, P = &A, Q = &C }

CPU1 CPU2

with out-of-
order execution

NB: Data dependency  Q is

modified in the first instruction
and used in the second one

Race conditions: example 3

B = 4;
P = &B;

Q = P;
D = *Q;

Five global variables
{ A = 1, B = 2, C = 3, P = &A, Q = &C }

CPU1 CPU2

with out-of-
order execution

 Partial order enforcement by CPU2  only 12

different combinations for memory accesses and
three different outputs:

 (Q=P,D) = (&A,1); (&B,2); (&B,4)

 D will never receive the value in C

Race conditions on devices

 Some devices present their control interfaces
as collections of memory locations

 The order in which control registers are

accessed may be crucial

 E.g.: Ethernet card with internal register set
accessed through address (A) and data (D)
port registers

A = 5;
x = *D;

To read internal register #5:

Race conditions on devices

 Out-of-order execution may cause second
instruction be executed before the first one
 malfunction!

 Since there is no explicit data dependency,
these problems are difficult to detect

A = 5;
x = *D;

Read register #5:

Things that can be assumed

 Dependent memory access on a given CPU
are always executed in order

Q = P;
D = *Q;

 Overlapping load and stores within a CPU
maintain functional dependencies

*P = A;
B = *P;

A = *P;
*P = B;

or

...and that cannot be assumed

 Order of execution of independent load and
stores A = *P;

B = *Q;
*R = C;

 Order of execution of overlapping load and
stores (preserving functional dependencies)

1) A = *P;
2) B = *(P + 4);

1) *P = A;
2) B = *P; or

may be: 1  2
 2  1

 1 & 2

may be: 1  2

 1 & 2 (*P=B=A)

Memory barriers (membar)

 Class of instructions to enforce an order on
memory operations

 Low-level machine code operating on shared
memory

 Ensures that all operations preceding a
membar are executed before all operations
following the barrier

Membar: example

 Two CPUs, each one
running a task using
global variables a and b

 Expected behavior:

 CPU1 spins until a
becomes ≠ 0

 Then prints the b value
stored by CPU2

 Expected output: 33

load eax, 0

while (eax == 0)
 load eax, [a]

print [b]

store 33, [b]
store 1, [a]

CPU 1:

CPU 2:

but...

 When CPU2’s
operations may be
executed out-of-order:

 a may be updated
before b

 CPU1 prints a
meaningless value

 Not acceptable!

load eax, 0

while (eax == 0)
 load eax, [a]

print [b]

store 33, [b]
store 1, [a]

CPU 1:

CPU 2:

Solution: memory barrier

 Use a memory barrier
before CPU2’s second
instruction

 “store 33, [b]” will be
always executed before
“store 1, [a]”

 Final output: 33

load eax, 0

while (eax == 0)
 load eax, [a]

print [b]

store 33, [b]
membar
store 1, [a]

CPU 1:

CPU 2:

Why/when using membars?

 Needed when out-of-order execution or
concurrent programming is used

 Many tricks to improve performances
 reordering

 deferral and combination of memory operations;

 speculative loads and branch prediction

 various types of caching

 Memory barriers allow overriding such tricks

 Instruct the compiler and the CPU to
restrict the order

Varieties of memory barriers

1. Write (or store) memory barriers

2. Data dependency barriers

3. Read (or load) memory barriers

4. General memory barriers

5. Implicit varieties:

 LOCK operations

 UNLOCK operations

Write (or store) memory barrier

 All STORE operations before the barrier will
appear (to other system components) to
happen before all STORE operations after the
barrier

 No effect on load operations

Wr_membar: example

A = 4;
Wr_membar;
P = &A;

Later loads of *P (by the
same processor) will obtain
the updated value = 4

No data dependency:
later load operations referencing
*P may obtain old values ≠ 4

A = 4;
P = &A;

 To enforce partial order between both
operations  insert a Wr_membar:

However..

 Other processors can see the update of A
after the update of P, due to caching:

A = 4;
Wr_membar;
P = &A;

L1 Cache

Q = P;
D = *Q;

L1 Cache

Main memory

CPU2 CPU1

{ A = 1, B = 2, C = 3, P = &B, Q = &C }

A = 1 P = &B

A = 4

P = &A

L1 Cache L1 Cache

However..

 Other processors can see the update of A
after the update of P, due to caching:

A = 4;
Wr_membar;
P = &A;

Q = P;
D = *Q;

Main memory

CPU2 CPU1

{ A = 1, B = 2, C = 3, P = &B, Q = &C }

A = 4 P = &A

= &A = 1

P = &A

A = 1

Busy

Inconsistency!!!
Q = &A
D = 1

Solution:

 Delay the read of *Q until its value has been
updated in memory

 The process running on CPU2 needs to
synchronize with the write barrier on CPU1

 Make sure that the target (*Q) of the second
load (D=load *Q) is updated, before the
address (Q) obtained by the first load
(Q=load P) is accessed

Data dependency barrier

 Enforce a partial ordering on interdependent
load operations

 Does not have any effect on

 stores

 independent or overlapping loads

 Weaker form of read memory barrier

L1 Cache L1 Cache

Example with DD_bar

 CPU2 cache is forced to commit its coherency
queue before processing further requests

A = 4;
Wr_membar;
P = &A;

Q = P;
DD_bar;
D = *Q;

Main memory

CPU2 CPU1

{ A = 1, B = 2, C = 3, P = &B, Q = &C }

A = 4 P = &A

= &A = 4

P = &A

A = 1

Busy

A = 4

Correct!!!
Q = &A
D = 4

When using DD barriers?

 Two or more consecutive loads with later
loads depending on the result of previous
ones

 Typical situations:
 the first load retrieves the address to which the

second load will be directed

 the first load retrieves a number which is then
used to calculate the index for an array

 A data dependency barrier would be required
to make sure that the target of the second
load is updated before the address obtained
by the first load is accessed

More in detail..

 Definition from Linux kernel manual

 “A data dependency barrier issued by the CPU
under consideration guarantees that for any load
preceding it, if that load touches one of a
sequence of stores from another CPU, then by the
time the barrier completes, the effects of all the
stores prior to that touched by the load will be
perceptible to any loads issued after the data
dependency barrier”.

Let’s try to understand..

 CPUs in the system can be viewed as committing
sequences of stores to memory, that other CPU can
then perceive

STORE A = 1;
STORE B = 2;
Wr_bar;
STORE C = 3;
STORE D = 4;
STORE E = 5;

L1 Cache

…

L1 Cache

Main memory

CPUx CPU1

…

L1 Cache

CPU2

…

Sequence of memory ops

CPU1

B=2

ti
m

e
lin

e

A=1

C=3

D=4

…

…

Write barrier

STORE A = 1;
STORE B = 2;
Wr_bar;
STORE C = 3;
STORE D = 4;
STORE E = 5;

Sequence in which stores are
committed to memory by CPU1

CPUx

E=5

Events perceptible to the
rest of the system

Example without DD_bar

STORE A = 1;
STORE B = 2;
Wr_bar;
STORE C = &B;
STORE D = 4;

L1 Cache

LOAD X;
LOAD C;
LOAD *C;

L1 Cache

Main memory

CPU2
CPU1

Initially: { B = 7; X = 9; Y = 8; C = &Y }

Sequence of ops without DD_bar

CPU1

B=2
ti
m

e
lin

e

A=1

C=&B

D=4

…

…

Write barrier

STORE A = 1;
STORE B = 2;
Wr_bar;
STORE C = &B;
STORE D = 4;

CPU2

LOAD X;
LOAD C;
LOAD *C; C=&Y

B=7

Initially: B = 7; X = 9; Y = 8; C = &Y

B=2

A=1

B=2

A=1

B=2

D=4

A=1

B=2

D=4

A=1

B=2

C=&B

X=9 D=4

A=1

B=2 Y=8

Incorrect
perception of B
(7 instead of 2) B=2

Inserting a DD_bar

STORE A = 1;
STORE B = 2;
Wr_bar;
STORE C = &B;
STORE D = 4;

L1 Cache

LOAD X;
LOAD C;
DD_bar;
LOAD *C;

L1 Cache

Main memory

CPU2
CPU1

Initially: { B = 7; X = 9; Y = 8; C = &Y }

C=&B

Sequence of ops with DD_bar

CPU1

ti
m

e
lin

e

D=4

…

…

Write barrier

STORE A = 1;
STORE B = 2;
Wr_bar;
STORE C = &B;
STORE D = 4;

CPU2

LOAD X;
LOAD C;
DD_bar;
LOAD *C; C=&Y

B=7

Initially: { B = 7; X = 9; Y = 8; C = &Y }

D=4 D=4

B=2

C=&B

X=9 D=4

A=1

Y=8

CPU2 reads
updated value
*C = B = 2

B=2

DD barrier

C=&B

Sequence of ops with DD_bar

CPU1

ti
m

e
lin

e

D=4

…

…

Write barrier

STORE A = 1;
STORE B = 2;
Wr_bar;
STORE C = &B;
STORE D = 4;

CPU2

LOAD X;
LOAD C;
DD_bar;
LOAD *C; C=&Y

B=7

Initially: { B = 7; X = 9; Y = 8; C = &Y }

D=4 D=4

B=2

C=&B

X=9 D=4

A=1

Y=8

B=2

DD barrier

“A data dependency barrier guarantees
that for any load preceding it, if that load
touches one of a sequence of stores from
another CPU, then by the time the barrier
completes, the effects of all the stores prior
to that touched by the load will be
perceptible to any load issued after the
data dependency barrier”.

Example: DD_bar and arrays

M[1] = 4;
Wr_bar;
J = 1;

L1 Cache

K = J;
DD_bar;
D = M[K];

L1 Cache

Main memory

CPU2 CPU1

Initially: { M[1] = 2, M[3] = 3, J = 0, K = 3 }

Read (or load) memory barriers

 All LOAD operations before the barrier will
appear (to other system components) to
happen before all LOAD operations after the
barrier

 No effect on store operations

 Stronger than data dependency barrier
 DD_bar applies only to dependent loads

 Rd_bar applies to all load operations

 Therefore, a Rd_bar implies a DD_bar

Example (without Rd_bar)

STORE A = 1;
Wr_bar;
STORE B = 2;

L1 Cache

LOAD B;
LOAD A;

L1 Cache

Main memory

CPU2 CPU1

Initially: { A = 0; B = 9 }

Independent
load ops

Sequence of ops without Rd_bar

CPU1

ti
m

e
lin

e

A=1

Write barrier

STORE A = 1;
Wr_bar;
STORE B = 2;

CPU2

B=9

A=0

B=2 B=2

A=0

Incorrect
perception of A
(0 instead of 1) A=1

Initially: { A = 0; B = 9 }

LOAD B;
LOAD A;

Inserting a Rd_bar

STORE A = 1;
Wr_bar;
STORE B = 2;

L1 Cache

LOAD B;
Rd_bar;
LOAD A;

L1 Cache

Main memory

CPU2
CPU1

Initially: { A = 0; B = 9 }

Sequence of ops with Rd_bar

CPU1

ti
m

e
lin

e

A=1

Write barrier

STORE A = 1;
Wr_bar;
STORE B = 2;

CPU2

B=9

A=0

B=2 B=2

A=0

A=1

Initially: { A = 0; B = 9 }

LOAD B;
Rd_bar;
LOAD A;

Rd barrier

CPU2 reads
updated value

A = 1

Rd_bar vs DD_bar

 A read barrier has to be used instead of a
data dependency barrier when

 there is no data dependency between the
operations involved. E.g.,

or

 there is a control dependency between the
operations involved. E.g.,

LOAD B;
LOAD A;

Q = &A;
if (C)
 Q = &B;
<BARRIER>
X = *Q

Here we need a Rd_bar!
A DD_bar is not sufficient since
there is a control dependency
between “Q=&B” and “X=*Q”

Pairing memory barriers

 A write barrier needs a data dependency
barrier or a read barrier, to work properly

 The partial ordering enforced by a Wr_bar on
a CPU can be perceived by other CPUs only if
they use a paired DD_bar (or Rd_bar)

 Typically the stores before the Wr_bar match
the loads after the Rd_bar (or DD_bar) and
viceversa A = 1;

B = 2;
Wr_bar;
C = 3;
D = 4;

Z = C;
W = D;
Rd_bar;
X = A;
Y = B;

General memory barriers

 All LOAD and STORE operations before the
barrier will appear (to other system
components) to happen before all LOAD and
STORE operations after the barrier

 Combine the functionalities of Wr_bar and
Rd_bar

 Therefore, a Full_bar implies both a Wr_bar and a
Rd_bar

Linux kernel barriers

 Compiler barriers

 barrier();

 CPU memory barriers

 Mandatory barriers: mb(); wmb(); rmb();
read_barrier_depends();

 SMP conditional barriers: smp_mb(); smp_wmb();
smp_rmb(); smp_read_barrier_depends();

 MMIO write barriers

 mmiowb();

Implicit kind of barriers

 LOCK and UNLOCK operations

 They are unidirectional barriers that are
permeable to read and write accesses only in
one way

 Used to delimit Critical Sections of code to
which a process need exclusive access

Critical Section (CS)

 A shared resource (data structure or device)
that must be exclusively accessed by one
thread

 Synchronization mechanism required at
Critical Section boundaries

 On uni-processors can be implemented
avoiding context switches (e.g., disabling
interrupts and preemptions)

 On multi-processors this is no more valid

Lock operations

 All LOAD and STORE operations after the lock
will appear (to other system components) to
happen after the lock

 Memory operations occurring before the lock
may appear to happen after it completes

...

...

...
...

LOCK

Unlock operations

 All LOAD and STORE operations before the
unlock will appear (to other system
components) to happen after the unlock

 Memory operations occurring before the unlock
may appear to happen after it completes

...

...

...
...

UNLOCK

Critical section implementation

 Lock and Unlock
operations are
almost always
paired

 They delimit
Critical Sections

 When lock/unlock
are used, no need
for explicit
memory barriers

UNLOCK

LOCK

Critical Section

Question

 Is a LOCK followed by an UNLOCK equivalent
to a full memory barrier?

LOCK

= =
?

Code…

Code…

Code…

Code…

UNLOCK
FULL_BAR

Lock/Unlock vs Full_bar

ti
m

e
lin

e

*A = a;
LOCK;
UNLOCK;
*B = b;

Store *B

LOCK

UNLOCK

Store *A

tim
e
lin

e

Store *B

FULL_BAR

Store *A
*A = a;
FULL_BAR;
*B = b;

Question

 Is an UNLOCK followed by a LOCK equivalent
to a full memory barrier?

UNLOCK

= =
?

Code…

Code…

Code…

Code…

LOCK
FULL_BAR

Unlock/Lock vs Full_bar

ti
m

e
lin

e

*A = a;
UNLOCK;
LOCK;
*B = b;

Store *B

UNLOCK

LOCK

Store *A
tim

e
lin

e

Store *B

FULL_BAR

Store *A
*A = a;
FULL_BAR;
*B = b;

= =

Example 1

Other CPUs might see, for
example:

 *E, LOCK M, LOCK Q, *G,
*C, *F, *A, *B, UNLOCK Q,
*D, *H, UNLOCK M

But they will never see:

 *B, *C or *D before LOCK M

 *A, *B or *C after UNLOCK M

 *F, *G or *H before LOCK Q

 *E, *F or *G after UNLOCK Q

*A = a;
LOCK M;
*B = b;
*C = c;
UNLOCK M;
*D = d;

*E = e;
LOCK Q;
*F = f;
*G = g;
UNLOCK Q;
*H = h;

CPU1 CPU2

Different spin locks M and Q

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1263

Example 2

CPU1 CPU2

Same spin lock M

Other CPUs might see, for
example:

 *E, LOCK M[1], *C, *B, *A,
UNLOCK M[1], LOCK M[2],
*H, *F, *G, UNLOCK M[2], *D

But, assuming CPU1 gets the

lock first, they will never see:
 *B, *C, *D, *F, *G or *H

before LOCK M[1]
 *A, *B or *C
 after UNLOCK M[1]
 *F, *G or *H
 before LOCK M[2]
 *A, *B, *C, *E, *F or *G
 after UNLOCK M[2]

[1]

[1]

[2]

[2]

*A = a;
LOCK M;
*B = b;
*C = c;
UNLOCK M;
*D = d;

*E = e;
LOCK M;
*F = f;
*G = g;
UNLOCK M;
*H = h;

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1291
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1292

Advisory vs mandatory locks

 Advisory lock

 Each thread cooperates by acquiring the lock
before accessing the protected resource

 Mandatory lock

 Attempting unauthorized access to a locked
resource forces an exception

Lock implementation

 For single processors the exclusive access to
a shared resource can be implemented
disabling interrupts

 For multiprocessors this is not enough!

 Hardware support required for efficient
implementation

 Atomic instruction(s) needed: test if lock is
free and acquire the lock in a single atomic
operation

Read-Modify-Write (RMW)

 RMW instructions atomically do both the
following operations:

 read a memory location

and

 write a new value into it simultaneously (either a
completely new value or some function of the
previous value)

 Example: Test-and-set(); Compare-and-
swap(); Fetch-and-add(); Dec_and_test();
etc.

Why atomicity is required?

 Consider two processes executing the
following piece of code to acquire the same
lock:

 If both tasks test the “lock” value at the

same time, they will both detect that the lock
is free  they will both acquire the lock!

if (lock == 0)
 lock = process_PID;

The access to the CS is not exclusive

Without atomic locking
ti
m

e
lin

e

LOAD R1lock

STORE lockPID1

if (lock == 0)
 lock = process_PID;

if (lock == 0)
 lock = process_PID;

Thread 1 Thread 2

ti
m

e
lin

e

LOAD R1lock

STORE lockPID2

Since R1 = 0
acquire_lock

Since R1 = 0
acquire_lock

CS code

CS code

With atomic locking
ti
m

e
lin

e

LOAD R1lock

STORE lockPID1

if (test_and_set(lock,0,PID1))
 <CS code>

if (test_and_set(lock,0,PID2))
 <CS code>

Thread 1 Thread 2

ti
m

e
lin

e

LOAD R1lock

Since R1 = 0
acquire_lock

Since R1 = PID1
do_something_else

CS code

atomic Bus locked

Atomic instructions in Linux

 Read-Modify-Write instructions:

 xchg(); cmpxchg(); atomic_cmpxchg();

 atomic_[inc|dec|add|sub]_return();

 atomic_[inc|dec|sub]_and_test();

 atomic_add_[negative|unless]();

 test_and_[set|clear|change]_bit();

 Other atomic instructions:

 atomic_set(); [set|clear|change]_bit();

 atomic_[inc|dec|add|sub]();

Atomic operations in Linux

 Are executed without being interrupted by
other operations

 Atomic operations that modify some state in
memory and return information about the
state (old or new) imply an SMP-conditional
general memory barrier (smp_mb()) on each
side of the actual operation

 E.g., cmpxchg(); atomic_dec_and_test();
test_and_set_bit(); ...

Otherwise...

 Round-robin

 Strict alternation: each thread can lock the
resource at its turn

 Dekker’s algorithm

 Limited to two processes and busy waiting

 Peterson’s algorithm

 Originally formulated for two processes, can be
generalized to more than two

Dekker’s algorithm

 Uses two flags (f0 and f1) to indicate
“intention to enter”, and a turn variable

f0 = true
while f1 {
 if turn ≠ 0 {
 f0 = false
 while turn ≠ 0 { }
 f0 = true
 }
}
// … Critical Section …

turn = 1
f0 = false

Initially, f0 = false; f1 = false; turn = 0 (or 1)
Thread1

f1 = true
while f0 {
 if turn ≠ 0 {
 f1 = false
 while turn ≠ 1 { }
 f1 = true
 }
}
// … Critical Section …

turn = 0
f1 = false

Thread2

Peterson’s algorithm

 Uses two flags (f0 and f1) to indicate
“intention to enter”, and a turn variable

f0 = true
turn = 1
while (f1 && turn==1) {}

// … Critical Section …

f0 = false

Initially, f0 = false; f1 = false; turn = 0 (or 1)

Thread1

f1 = true
turn = 0
while (f0 && turn==0) {}

// … Critical Section …

f1 = false

Thread2

Considerations

 Dekker’s and Peterson’s algorithm would

need memory barriers when used on
processors with instruction reordering

 More efficient solutions are provided using
atomic operations

Key design aspects for locks

 Overhead

 extra resources used just for the implementation
of the lock  memory space, time for lock

initialization/destruction and acquire/release

 Contention

 number of threads that can concurrently request
the lock  a locked shared by many processes

implies a larger blocking probability

 Granularity

 size of the protected region  course vs fine

granularity

Lock granularity

 Coarse granularity

 less overhead, but more lock contention

 Fine granularity

 larger number of “faster” locks

 larger system overhead

 higher risk of deadlocks

 Example: locking a whole table, a row, or a
single entry

Risks related to locking

 Blocking time  starvation, lack of fairness

 Locking tasks stalls/blocks/dies/loops

 Error-prone due to crossed dependencies
difficult to detect for larger program sizes

 Deadlocks, livelocks

 Priority inversion

 Bugs difficult to reproduce

Linux kernel locking constructs

 Spin locks

 R/W spin locks

 Mutexes

 Semaphores

 R/W semaphores

 RCU

All require atomic instruction support

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1111
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1112
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1113
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1114
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/memory-barriers.txt;h=f5b7127f54acb6af1d9f997a40e099b60c0b7571;hb=HEAD#l1115

Spinlock

 A thread waits (“spins”) until the lock is

available

 Wasteful if locks are held for a long time

 On a single processor, many time quanta may be
wasted due to spinning on a resource locked by a
preempted thread

 Efficient for short locks  avoid process re-

scheduling

Spinlock: example

 The lock variable is 1 when
locked, 0 when unlocked

 “xchg eax, [lock]” atomically

swap the EAX register with
the lock variable

 “test eax, eax” sets the zero

flag if EAX = 0

 If zero flag is set, the lock
has been acquired

 Otherwise spin

lock:
 dd 0

spin_lock:
 mov eax, 1

loop:
 xchg eax, [lock]
 test eax, eax
 jnz loop
 ret

Spinlock: unlock

 To release the lock, reset the
lock variable to zero

lock:
 dd 0

spin_unlock:
 mov eax, 0
 xchg eax, [lock]
 ret

Spinlock and interrupts

 When an interrupt handler can access the
lock as well, the following situation might
occurr

spin_lock(&lock);
…

…

spin_lock(&lock);

Interrupt comes in

Process on CPU1

DEADLOCK!!!
Waits for the release of the
lock which will never happen

Solution: disable interrupt

 Disable interrupts

spin_lock(&lock);
cli();
…

sti();
spin_unlock(&lock)

Process on CPU1

spin_lock(&lock);
…

spin_unlock(&lock);

Interrupt arrival

handling
deferred

Spinlock and interrupts

 Only local interrupts need to be disabled 
not necessary to disable interrupts on other
CPUs

 In Linux
 xxx_lock_irqsave(...)

 xxx_unlock_irqrestore(...)

spin_lock(&lock);
…

<continue exec>
spin_unlock(&lock)

Process on CPU1

spin_lock(&lock);
…

spin_unlock(&lock);

Interrupt arrival
on CPU2

Reader-Writer spinlocks

 Allow multiple readers to be in the same
critical section at once

 Do not allow more than one single writer at a
time

 Usually, there is no need to read a shared
resource with an exclusive access to it...

 ... as long as no other process modifies it!

R/W spin locks in Linux: read

 Readers acquire/release the lock with

 read_lock(&xxx_lock, flags);

 read_unlock(&xxx_lock, flags);

 If no process is holding a write lock on the
same resource, the read lock can be acquired

 The only result will be an increment/decrement
in the counter of the processes currently
holding the lock

R/W spin locks in Linux: write

 Writer acquires/releases the lock with

 write_lock(&xxx_lock, flags);

 write_unlock(&xxx_lock, flags);

 It can acquire the lock only when there is no
process holding a (read or write) lock 

check the lock_counter

 When a process is holding a write lock, no
other process can acquire the lock

Considerations

 R/W spin locks are faster than normal spin
locks, allowing more readers to
contemporarily access the resource

 If we know that interrupts will only need read
locks, possible to use

 read_lock(&lock) for read accesses

and

 write_lock_irqsave(&lock, flags) for write accesses

Busy-wait

 Busy-wait is an anti-pattern associated to
“spinning” before entering a critical section

 Waste of CPU cycles

 May delay subsequent requests, reducing the
spinning frequency

 Better to block the process on events like
lock acquisitions, timers, I/O availability, or
signals  the blocked thread is put in

sleeping state and other threads are executed

Locking strategies

 Instead of “spinning”, a more efficient
method is using semaphores with blocking

 Thread must acquire a semaphore before
entering a CS

 Block the execution of the thread requesting
the lock until it is allowed to acquire the
semaphore

 Other threads can execute other code/critical
sections

Semaphores

 A protected variable to restrict the access to
shared resources

 Implemented by a counter for a set of
available resource  counting semaphore

 Binary semaphores are called mutexes

 Prevents race conditions but not deadlocks

Non-blocking synchronization

 Overcomes the disadvantages of using locks

 Lock-free

 a thread cannot lock up: every step it takes brings
progress to the system

 Wait-free

 a thread can complete any operation in a finite
number of steps, regardless of other threads

 All wait-free algorithms are lock-free (but not
viceversa)

 No semaphores nor mutexes

Lock-free algorithms

 Still need atomic instructions like Test-and-
set, Compare-and-swap, etc.

 Example:
CAS(addr, old, new)
{
atomic
 if (*addr == old)
 then {*addr = new ;
 return true}
 else return false
endatomic
}

Example: bank account

 Each thread represents a teller trying to make
a deposit onto the same account

Thread1 Thread2

Bank account

 Need to synchronize simultaneous deposits to
the account

Write conflict

 If both threads simultaneously read the
account  a transaction is lost!

deposit(money)
{
 A = read_account();
 A = A + money;
 write_account(A);
}

deposit(money)
{
 A = read_account();
 A = A + money;
 write_account(A);
}

Thread 1 Thread 2

Locking solution

 Each teller has to acquire a lock before doing
a deposit:

deposit(money)
{
 lock(account);
 A = read_account();
 A = A + money;
 write_account(A);
 unlock(account);
}

 Implies locking overhead

Lock-free solution

 Use Compare_And_Swap(address,old,new):

 deposit(money)
{
 do{
 A = read_account();
 B = A + money;
 }
 while (! CAS(account, A, B))
}

 Lock-free but not wait-free: other tellers may
keep writing new values  failing teller tries

again indefinitely

Reducing contention

 To reduce traffic on the bus due to repeated
reads, failing threads may wait some time
before trying another update

 constant delay

 incremental delay

 random delay

ABA problem

 Arises when a thread reads a location a
second time to detect if anything has
changed from the first read

 But another thread could have modified and
restored the value at that location, e.g.

 Thread 1 reads A from a shared memory location

 Thread 2 modifies the same location from A to B
and back to A

 Thread 1 reads again the value A and assumes
nothing changes  ERROR!!!

ABA problem with lock-free

 Push and Pop function of a stack list

Obj* Pop()
{
 while(1) {
 Obj* ret = top;
 if (!ret) return NULL;
 Obj* next = ret->next;
 if (CAS(&top, ret, next))
 return ret;
 }
}

void Push(Obj* obj)
{
 while(1) {
 Obj* next = top;
 obj->next = next;
 if (CAS(&top, next, obj))
 return;
 }
}

ABA problem with CAS

 Suppose initially the stack contains

top  A  B  C

 Suppose Thread1 is preempted during the
Pop() by Thread2

Thread1
{
 Pop();
}

Thread2
{
 Pop();
 Pop();
 Push(A);
}

top  A  C
top  C
top  B  C

ABA problem with CAS

 Thread1’s Pop operation:

Obj* Pop()
{
 while(1) {
 Obj* ret = top;
 if (!ret) return NULL;
 Obj* next = ret->next;

//--- PREEMPTED BY THREAD2---

 if (CAS(&top, ret, next))
 return ret;
 }
}

ret  A

next  B

top  A  C

CAS succeeds but leaves
the stack in wrong state:

top  ???! (B was popped
by Thread2)

Transactional memory

 Lock-free approach that is able to deal with
the ABA problem

 Allows a group of load and store instructions
to execute in an atomic way

 Load-Link/Store-Conditional

 Software Transactional Memory (STM)

Load-Link/Store-Conditional

 LL works like a normal load from a memory
location

 A subsequent SC to the same memory
location will store a new value only if no
updates have occurred to that location since
the load-link, otherwise it fails

 SC fails even if the value read by LL has since
been updated and then restored (ABA
problem)  LL/SC is stronger than read/CAS

Software Transactional Memory
(STM)

 Optimistic behavior: threads complete
modifications to shared memory regardless of
other threads

 They record every read and write in a log

 Each reader verifies that other threads have
not concurrently made changes to memory
that it accessed in the past

 commit permanent changes if validation is
successful

 otherwise abort, undoing all its prior changes

STM: considerations

 The conflict control is placed on the reader
instead of the writer

 Increased concurrency: no need to wait for
access to a resource

 Increased overhead in case of failing

 Good performance in practice  conflicts

arise rarely in practice

Read-Copy Update (RCU)

 Split updates into “removal” and
“reclamation” phases

 The removal phase

 removes references to data items within a data
structure (possibly by replacing them with
references to new versions of these data items)

 can run concurrently with readers which will see
either the old or the new version of the data
structure rather than a partially updated reference

RCU

 The reclamation phase

 frees the data items removed from the data
structure during the removal phase

 must not start until readers no longer hold
references to those data items

 reclaiming can be done either by blocking or by
registering a callback

 No need to consider readers starting after the
removal phase  they are unable to gain a

reference to the removed data items

RCU typical sequence

1. Remove pointers to a data structure  later

readers cannot gain a reference to it

2. Wait for all previous readers to complete
their RCU read-side critical sections

3. Reclaim the data structure (e.g., using kfree
in the Linux kernel)

top

Advantages of RCU

 Wait-free reads

 RCU readers use much lighter-weight
synchronization  low overhead

 Reclamation phase may by done by entirely
different thread  e.g., Linux directory entry

cache

Where does the name come from?

 Read-Copy Update

 A thread wishing to update a linked structure
in place does the following

 creates a new structure, copying the data from
the old structure into the new one

 modifies the new, copied, structure

 updates the pointer to refer to the new structure

 sleeps until there are no readers left

 Therefore, an RCU protected structure is
Read concurrently with a thread Copying in
order to do an Update

Linux RCU implementation

 RCU API

 rcu_read_lock()

 rcu_read_unlock()

 synchronize_rcu() / call_rcu()

 rcu_assign_pointer()

 rcu_dereference()

Conclusion

 Sharing data on multicore platforms requires
attention

 Possible to choose among different constructs
(spinlocks, semaphores, R/W locks, RCU, …)

 Using proper mechanism it is possible to
exploit the power of multicore

 Start thinking parallel!

