
Design Patterns for
Parallel Programming

Roberto Cavicchioli
roberto.cavicchioli@unimore.it

© 2016 Università degli studi di Modena

4 Common Steps to
Creating a Parallel Program

Parallel Programming LM – 2016/17 2

© 2016 Università degli studi di Modena

� Identify concurrency and decide at what level to exploit it

� Break up computation into tasks to be divided among
processes
– Tasks may become available dynamically
– Number of tasks may vary with time

� Enough tasks to keep processors busy
– Number of tasks available at a time is upper bound on achievable

speedup

Decomposition (Amdahl’s Law)

Parallel Programming LM – 2016/17 3

© 2016 Università degli studi di Modena

�Specify mechanism to divide work among core
– Balance work and reduce communication

�Structured approaches usually work well
– Code inspection or understanding of application
– Well-known design patterns

�As programmers, we worry about partitioning first
– Independent of architecture or programming model
– But complexity often affect decisions!

Assignment (Granularity)

Parallel Programming LM – 2016/17 4

© 2016 Università degli studi di Modena

�Computation and communication concurrency

�Preserve locality of data

�Schedule tasks to satisfy dependences early

Orchestration and Mapping (Locality)

Parallel Programming LM – 2016/17 5

© 2016 Università degli studi di Modena

� Provides a cookbook to systematically guide programmers
– Decompose, Assign, Orchestrate, Map
– Can lead to high quality solutions in some domains

� Provide common vocabulary to the programming
community
– Each pattern has a name, providing a vocabulary for discussing

solutions

� Helps with software reusability,malleability, and modularity
– Written in prescribed format to allow the reader to quickly

understand the solution and its context

� Otherwise, too difficult for programmers, and software will
not fully exploit parallel hardware

Parallel Programming by Pattern

Parallel Programming LM – 2016/17 6

© 2016 Università degli studi di Modena

Algorithm Expression

� Finding Concurrency
– Expose concurrent tasks

� Algorithm structure
– Map tasks to processes to

exploit parallel architecture

Patterns for Parallelizing Programs

Parallel Programming LM – 2016/17 7

Software Construction

� Supporting Structures
– Code and data structuring

patterns

� Implementation Mechanisms
– Low level mechanisms used to

write parallel programs

4 Design Spaces

© 2016 Università degli studi di Modena

Here’s my algorithm.
Where’s the concurrency?

Parallel Programming LM – 2016/17 8

© 2016 Università degli studi di Modena

Here’s my algorithm.
Where’s the concurrency?

Parallel Programming LM – 2016/17 9

� Task decomposition
– Independent coarse-grained

computation
– Inherent to algorithm

� Sequence of statements
(instructions) that operate
together as a group
– Corresponds to some logical part

of program
– Usually follows from the way

programmer thinks about a
problem

© 2016 Università degli studi di Modena

Here’s my algorithm.
Where’s the concurrency?

Parallel Programming LM – 2016/17 10

�Task decomposition
– Parallelism in the

application

�Data decomposition
– Same computation is applied to

small data chunks derived from
large data set

© 2016 Università degli studi di Modena

Here’s my algorithm.
Where’s the concurrency?

Parallel Programming LM – 2016/17 11

�Task decomposition
– Parallelism in the

application

�Data decomposition
– Same computation many data

�Pipeline decomposition
– Data assembly lines
– Producer-consumer chains

© 2016 Università degli studi di Modena

�Algorithms start with a good understanding of the
problem being solved

�Programs often naturally decompose into tasks
– Two common decompositions are

• Function calls and
• Distinct loop iterations

�Easier to start with many tasks and later fuse
them, rather than too few tasks and later try to split
them

Guidelines for Task Decomposition

Parallel Programming LM – 2016/17 12

© 2016 Università degli studi di Modena

� Flexibility
– Program design should afford flexibility in the number and size of

tasks generated
• Tasks should not tied to a specific architecture
• Fixed tasks vs. Parameterized tasks

� Efficiency
– Tasks should have enough work to amortize the cost of creating

and managing them
– Tasks should be sufficiently independent so that managing

dependencies doesn’t become the bottleneck

� Simplicity
– The code has to remain readable and easy to understand, and

debug

Guidelines for Task Decomposition

Parallel Programming LM – 2016/17 13

© 2016 Università degli studi di Modena

�Data decomposition is often implied by task
decomposition

�Programmers need to address task and data
decomposition to create a parallel program
– Which decomposition to start with?

�Data decomposition is a good starting point when
– Main computation is organized around manipulation of a large data

structure
– Similar operations are applied to different parts of the data structure

Guidelines for Data Decomposition

Parallel Programming LM – 2016/17 14

© 2016 Università degli studi di Modena

�Array data structures
– Decomposition of arrays along rows, columns,

blocks

�Recursive data structures
– Example: decomposition of trees into sub-trees

Common Data Decompositions

Parallel Programming LM – 2016/17 15

© 2016 Università degli studi di Modena

�Flexibility
– Size and number of data chunks should support a

wide range of executions
�Efficiency

– Data chunks should generate comparable amounts
of work (for load balancing)

�Simplicity
– Complex data compositions can get difficult to

manage and debug

Guidelines for Data Decomposition

Parallel Programming LM – 2016/17 16

© 2016 Università degli studi di Modena

�Data is flowing through a sequence of stages
– Assembly line is a good analogy

�What’s a prime example of pipeline decomposition
in computer architecture?
– Instruction pipeline in modern CPUs

�What’s an example pipeline you may use in your
UNIX shell?
– Pipes in UNIX: cat foobar.c | grep bar | wc

�Other examples
– Signal processing
– Graphics

Case for Pipeline Decomposition

Parallel Programming LM – 2016/17 17

© 2016 Università degli studi di Modena

Re-engineering for Parallelism

Parallel Programming LM – 2016/17 18

© 2016 Università degli studi di Modena

� Parallel programs often start as sequential programs
– Easier to write and debug
– Legacy codes

� How to reengineer a sequential program for parallelism:
– Survey the landscape
– Pattern provides a list of questions to help assess existing code
– Many are the same as in any reengineering project
– Is program numerically well-behaved?

� Define the scope and get users acceptance
– Required precision of results
– Input range
– Performance expectations
– Feasibility (back of envelope calculations)

Reengineering for Parallelism

Parallel Programming LM – 2016/17 19

© 2016 Università degli studi di Modena

�Define a testing protocol
� Identify program hot spots: where is most of the

time spent?
– Look at code
– Use profiling tools

�Parallelization
– Start with hot spots first
– Make sequences of small changes, each followed by

testing
– Pattern provides guidance

Reengineering for Parallelism

Parallel Programming LM – 2016/17 20

© 2016 Università degli studi di Modena

�Simulate motion in large molecular system
– Used for example to understand drug-protein

interactions

�Forces
– Bonded forces within a molecule
– Long-range forces between atoms

�Naïve algorithm has n2 interactions: not feasible
�Use cutoff method: only consider forces from

neighbors that are “close enough”

Parallel Programming LM – 2016/17 21

Example: Molecular dynamics

© 2016 Università degli studi di Modena

// pseudo code

real[3,n] atoms

real[3,n] force

int [2,m] neighbors

function simulate(steps)

for time = 1 to steps and for each atom

Compute bonded forces

Compute neighbors

Compute long-range forces

Update position

end loop

end function

Sequential Molecular Dynamics Simulator

Parallel Programming LM – 2016/17 22

© 2016 Università degli studi di Modena

Finding Concurrency Design Space

Parallel Programming LM – 2016/17 23

© 2016 Università degli studi di Modena

�Main computation is a loop over atoms
�Suggests task decomposition

– Task corresponds to a loop iteration
• Update a single atom

– Additional tasks
• Calculate bonded forces
• Calculate long range forces

– Find neighbors
– Update position

�There is data shared between the tasks

Decomposition Patterns

Parallel Programming LM – 2016/17 24

© 2016 Università degli studi di Modena

Understand Control Dependences

Parallel Programming LM – 2016/17 25

© 2016 Università degli studi di Modena

Understand Data Dependences

Parallel Programming LM – 2016/17 26

© 2016 Università degli studi di Modena

�What is the target architecture?
– Shared memory, distributed memory, message passing, …

�Does data sharing have enough special properties
(read only, accumulate, temporal constraints) that
we can deal with dependences efficiently?

� If design seems OK, move to next design space

Evaluate Design

Parallel Programming LM – 2016/17 27

© 2016 Università degli studi di Modena

� Given two tasks how to determine if they can safely run in parallel?

Dependence Analysis

Parallel Programming LM – 2016/17 28

Bernstein’s Condition

� Ri: set of memory locations read (input) by task Ti

� Wj: set of memory locations written (output) by task Tj

� Two tasks T1 and T2 are parallel if
– input to T1 is not part of output from T2
– input to T2 is not part of output from T1
– outputs fromT1 andT2 do not overlap

© 2016 Università degli studi di Modena

Example

Parallel Programming LM – 2016/17 29

© 2016 Università degli studi di Modena

�Given a collection of concurrent tasks, what’s the
next step?

�Map tasks to units of execution (e.g., threads)

� Important considerations
– Magnitude of number of execution units platform will

support
– Cost of sharing information among execution units
– Avoid tendency to over constrain the implementation

• Work well on the intended platform
• Flexible enough to easily adapt to different architectures

Algorithm Structure Design Space

Parallel Programming LM – 2016/17 30

© 2016 Università degli studi di Modena

�How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

�Concurrency usually implies major organizing
principle
– Organize by tasks
– Organize by data decomposition
– Organize by flow of data

Major Organizing Principle

Parallel Programming LM – 2016/17 31

© 2016 Università degli studi di Modena

Organize by Tasks?

Parallel Programming LM – 2016/17 32

© 2016 Università degli studi di Modena

� Ray tracing
– Computation for each ray is a separate and independent

� Molecular dynamics
– Non-bonded force calculations, some dependencies

� Common factors
– Tasks are associated with iterations of a loop
– Tasks largely known at the start of the computation
– All tasks may not need to complete to arrive at a solution

Task Parallelism

Parallel Programming LM – 2016/17 33

© 2016 Università degli studi di Modena

� For recursive programs: divide and conquer
– Subproblems may not be uniform
– May require dynamic load balancing

Divide and Conquer

Parallel Programming LM – 2016/17 34

© 2016 Università degli studi di Modena

� Operations on a central data structure
– Arrays and linear data structures
– Recursive data structures

Organize by Data?

Parallel Programming LM – 2016/17 35

© 2016 Università degli studi di Modena

� Gravitational body
simulator
– Calculate force between

pairs of objects and
update accelerations

Geometric Decomposition

Parallel Programming LM – 2016/17 36

© 2016 Università degli studi di Modena

�Computation on a list, tree, or graph
– Often appears the only way to solve a problem is to

sequentially move through the data structure

�There are however opportunities to reshape the
operations in a way that exposes concurrency

Recursive Data

Parallel Programming LM – 2016/17 37

© 2016 Università degli studi di Modena

�Given a forest of rooted directed trees, for each
node, find the root of the tree containing the node
– Parallel approach: for each node, find its

successor’s successor, repeat until no changes
• O(log n) vs. O(n)

Recursive Data Example: Find the Root

Parallel Programming LM – 2016/17 38

© 2016 Università degli studi di Modena

�Parallel restructuring of find the root algorithm
leads to O(n log n) work vs. O(n) with sequential
approach

�Most strategies based on this pattern similarly
trade off increase in total work for decrease in
execution time due to concurrency

Work vs. Concurrency Tradeoff

© 2016 Università degli studi di Modena

� In some application domains, the flow of data imposes
ordering on the tasks
– Regular, one-way, mostly stable data flow
– Irregular, dynamic, or unpredictable data flow

Organize by Flow of Data?

© 2016 Università degli studi di Modena

�Amount of concurrency in a pipeline is limited by
the number of stages

�Works best if the time to fill and drain the pipeline
is small compared to overall running time

�Performance metric is usually the throughput
– Rate at which data appear at the end of the pipeline per

time unit (e.g., frames per second)

�Pipeline latency is important for real-time
applications
– Time interval from data input to pipeline, to data output

Pipeline Throughput vs. Latency

© 2016 Università degli studi di Modena

�In this pattern, interaction of tasks to
process data can vary over unpredictable
intervals

�Deadlocks are likely for applications that use
this pattern

Event-Based Coordination

© 2016 Università degli studi di Modena

�SPMD
� Loop parallelism
�Master/Worker
�Fork/Join

Supporting Structures

© 2016 Università degli studi di Modena

�Single Program Multiple Data: create a single
source-code image that runs on each processor
– Initialize
– Obtain a unique identifier
– Run the same program each processor

• Identifier and input data differentiate behavior

– Distribute data
– Finalize

SPMD Pattern

© 2016 Università degli studi di Modena

static long num_steps = 100000;

void main()

{

int i;

double pi, x, step, sum = 0.0;

step = 1.0 / (double) num_steps;

for (i = 0; i < num_steps; i++){

x = (i + 0.5) ∗ step;

sum = sum + 4.0 / (1.0 + x ∗x);

}

pi = step ∗ sum;

printf(“Pi = %f\n”, pi);

}

Example: Parallel Numerical Integration

© 2016 Università degli studi di Modena

static long num_steps = 100000;

void main(int argc, char* argv[])

{

int i_start, i_end, i, myid, numprocs;

double pi, mypi, x, step, sum = 0.0;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_BCAST(&num_steps, 1, MPI_INT, 0, MPI_COMM_WORLD);

i_start = my_id ∗ (num_steps/numprocs)

i_end = i_start + (num_steps/numprocs)

step = 1.0 / (double) num_steps;

for (i = i_start; i < i_end; i++) {

x = (i + 0.5) ∗ step

sum = sum + 4.0 / (1.0 + x ∗x);

}

mypi = step * sum;

MPI_REDUCE(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0)

printf(“Pi = %f\n”, pi);

MPI_Finalize();

}

WARNING!! Block vs Cyclic work distribution

Computing Pi With Integration (MPI)

© 2016 Università degli studi di Modena

�Split data correctly

�Correctly combine the results

�Achieve an even distribution of the work

�For programs that need dynamic load balancing,
an alternative pattern is more suitable

SPMD Challenges

© 2016 Università degli studi di Modena

�Many programs are expressed using iterative
constructs
– Programming models like OpenMP provide directives to

automatically assign loop iteration to execution units
– Especially good when code cannot be massively

restructured

Loop Parallelism Pattern

© 2016 Università degli studi di Modena

Master/Worker Pattern

© 2016 Università degli studi di Modena

�Particularly relevant for problems using task
parallelism pattern where task have no
dependencies
– Embarrassingly parallel problems

�Main challenge in determining when the entire
problem is complete

Master/Worker Pattern

© 2016 Università degli studi di Modena

�Tasks are created dynamically
– Tasks can create more tasks

�Manages tasks according to their relationship

�Parent task creates new tasks (fork) then waits
until they complete (join) before continuing on with
the computation

Fork/Join Pattern

© 2016 Università degli studi di Modena

�Point-to-point

�Broadcast

�Reduction

Communication Patterns

© 2016 Università degli studi di Modena

� When reduction operator is not associative
� Usually followed by a broadcast of result

Serial Reduction

© 2016 Università degli studi di Modena

� n steps for 2n units of execution
� When reduction operator is associative
� Especially attractive when only one task needs result

Tree-based Reduction

© 2016 Università degli studi di Modena

� n steps for 2n units of execution
� If all units of execution need the result of the reduction

Recursive-doubling Reduction

© 2016 Università degli studi di Modena

�Better than tree-based approach with broadcast
– Each units of execution has a copy of the reduced

valutat the end of n steps
– In tree-based approach with broadcast

• Reduction takes n steps
• Broadcast cannot begin until reduction is complete
• Broadcast takes n steps (architecture dependent)
• O(n) vs. O(2n)

Recursive-doubling Reduction

© 2016 Università degli studi di Modena

� Patterns can be hierarchically composed so that a program uses more
than one pattern

Algorithm Structure and Organization

© 2016 Università degli studi di Modena

� We know that a system is composed of more than one sub-systems
and it contains a number of components. Further, these sub-systems
and components may have their on set of sub-system and components
and creates hierarchical structure in the system.

� Top-down design takes the whole software system as one entity and
then decomposes it to achieve more than one sub-system or
component based on some characteristics. Each sub-system or
component is then treated as a system and decomposed further. This
process keeps on running until the lowest level of system in the top-
down hierarchy is achieved.

� Top-down design starts with a generalized model of system and keeps
on defining the more specific part of it. When all components are
composed the whole system comes into existence.

� Top-down design is more suitable when the software solution needs to
be designed from scratch and specific details are unknown.

Design methodology: Top-Down

© 2016 Università degli studi di Modena

� The bottom up design model starts with most specific and basic
components. It proceeds with composing higher level of components by
using basic or lower level components. It keeps creating higher level
components until the desired system is not evolved as one single
component. With each higher level, the amount of abstraction is
increased.

� Bottom-up strategy is more suitable when a system needs to be
created from some existing system, where the basic primitives can be
used in the newer system.

� Both, top-down and bottom-up approaches are not practical
individually. Instead, a good combination of both is used.

Design methodology: Bottom-Up

