
Concurrency

[A. Warhol – Marilyn Monroe, 1960]

The need for concurrency

● There are many reason for concurrency
– Functional

– Performance

– Expressive power

● Functional
– Many users may be connected to the same system at

the same time
● Each user can have its own processes that execute

concurrently with the processes of the other users
– Perform many operations concurrently

● For example, listen to music, write with a word processor, burn
a CD, etc...

● They are all different and independent activities
● They can be done “at the same time”

the need for concurrency (2)

● Performance
– Take advantage of blocking time

● While some thread waits for a blocking condition, another
thread performs another operation

– Parallelism in multi-processor machines
● On a multi-core machine, independent activities can be carried

out on different cores are the same time
● Expressive power

– Many control application are inherently concurrent
– Concurrency support helps in expressing concurrency,

making application development simpler

Theoretical model

● A system is a set of concurrent activities
– They can be processes or threads

● They interact in two ways
– They access the hardware resources

● processor
● disk
● memory, etc.

– They exchange data
● These activities compete for the resources and/or

cooperate for some common objective

Resource

● A resource can be
– A HW resource like a I/O device
– A SW resource, i.e. a data structure
– In both cases, access to a resource must be regulated

to avoid interference
● Example 1

– If two processes want to print on the same printer, their
access must be sequentialised, otherwise the two
printing could be intermangled!

● Example 2
– If two threads access the same data structure, the

operation on the data must be sequentialized otherwise
the data could be inconsistent!

Interaction model

● Activities can interact according to two
fundamental models
– Shared memory

● All activities access the same memory space
– Message passing

● All activities communicate by sending each other
messages through OS primitives

– We will analize both models in the following slides

Cooperative vs Competitive

The interaction between concurrent activities (threads
or processes) can be classified into:

● Competitive concurrency
– Different activities compete for the resources
– One activity does not know anything about the other
– The OS must manage the resources so to

● Avoid conflicts
● Be fair

● Cooperative concurrency
– Many activities cooperate to perform an operation
– Every activity knows about the others
– They must synchronize on particular events

Competition

● Cooperative and competitive activities need
different models of execution and
synchronization
– Competing activities need to be “protected” from

each other
● Separate memory spaces, as with different processes

– The allocation of the resource and the
synchronization must be centralized

● Competitive activities request for services to a central
manager (the OS or some dedicated process) which
allocates the resources in a fair way

– Client/Server model
● Communication is usually done through messages

– More suitable to the process model of execution

Competition (2)

● In a client/server system
– A server manages the resource exclusively

● For example, the printer
– If a process needs to access the resource, it sends a

request to the server
● For example, printing a file, or asking for the status

– The server can send back the responses
– The server can also be on a remote system

● Two basic primitives:
– send and receive Client 1

Client 2

Server

Cooperation

● Cooperative activities know about each other
– They do not need memory protection

● Not using memory protection, we have less overhead
– They need to access the same data structures
– Allocation of the resource is de-centralized
– Shared memory model
– More suitable to the thread model of execution

Cooperation and competion

● Competition is best resolved by using
the message passing model
– However it can be implemented using a shared memory

paradigm too
● Cooperation is best implemented by using

the shared memory paradigm
– However, it can be realized by using pure message

passing mechanisms
● Shared memory or message passing?

– In the past, there were OS that supported only shared
memory or only message passing

Cooperation and competion (2)

● A general purpose OS needs to support both models
– Protection for competing activities
– Client/server models → message passing primitives
– Shared memory for reducing the overhead

● Some special OS supports only one of the two
– for example, some RTOS supports only shared memory

Models of concurrency

Shared Memory

Shared memory

● Shared memory communication
– The first one being supported in old OS
– The simplest one and the closest to the machine
– All threads can access the same memory locations

Thread 1 Thread 2 Thread 3

Shared memory

Hardware analogy

● An abstract model that presents a good analogy
is the following
– Many HW CPU, each one running one activity

(thread)
– One shared memory

CPU CPU CPU

Memory

Resource allocation

● Allocation of resource can be
– Static: once the resource is granted, it is never revoked
– Dynamic: resource can be granted and revoked

dynamically
● Manager

● Access to a resource can be

– Dedicated: only one activity at a time may request
access to the resource

– Shared: many activities may access the resource at the
same time

● Mutual exclusion
Dedicated Shared

Static

Dynamic

Compile
Time

Manager

ManagerManager

Mutual exclusion problem

● We do not know in advance the relative speed of the
processes
– Hence, we do not know the order of execution of the

hardware instructions

● Example:

– Incrementing a variable x is NOT an atomic operation

Atomicity

● A hardware instruction is atomic if it cannot be
“interleaved” with other instructions
– Atomic operations are always sequentialized
– Atomic operations cannot be interrupted

● They are safe operations
● For example, transferring one word from memory to register or

viceversa

– Non atomic operations can be interrupted
● They are not “safe” operations
● Non elementary operations are not atomic

Non-atomic operations

● Consider a “simple” operation like:

x = x+1;

LD R0, x
INC R0
ST x, RO

● In assembler:

● A simple operation like incrementing a memory
variable, may be composed by three machine
instructions

Example 1

● Bad interleaving:

...
LD R0, x TA x = 0
LD R0, x TB x = 0
INC R0 TB x = 0
ST x, R0 TB x = 1
INC R0 TA x = 1
ST x, R0 TA x = 1
...

int x ;

shared memory void *threadA(void *)
{

...;
x = x + 1;
...;

}

void *threadB(void *)
{

...;
x = x + 1;
...;

}

consistency:
after each
operation,
a == b

Example 2

● Bad interleaving

struct A_t {
int a;
int b;

} A;

void A_init(A_t *x) { x->a=1; x->b=1; }
void A_inc(A_t *x) { x->a++; x->b++; }
void A_mul(A_t *x){ x->b*=2; x->a*=2;}

Shared object (sw resource)

void *threadA(void *)
{

...
A_inc(&A);
...

}

void *threadB(void *)
{

...
A_mul(&A);
...

}

resource in a
non-consistent
state!

x->a++; TA a = 2
x->b*=2; TB b = 2
x->b++; TA b = 3
x->a*=2; TB a = 4

Consistency

● For each resource, we can state some consistency property
– A consistency property Ci is a boolean expression on the

values of the internal variables
– A consistency property must hold before and after each

operation
– It does not hold during an operation
– If the operations are properly sequentialized, the consistency

properties must hold
● Formal verification

– Let R be a resource, and let C(R) be a set of consistency
properties on the resource

● C(R) = { Ci }

Definition: a concurrent program is correct if, for every possible
interleaving of the operations on the resource, the consistency
properties hold after each operation

Example 3: circular array

struct CircularArray_t {
int array[10];
int head, tail, num;

} queue;

void init_CA(struct CircularArray_t *a)
{ a->head=0; a->tail=0; a->num=0; }

int insert_CA(struct CircularArray_t *a,
int elem)

{ if (a->num == 10) return 0;
a->array[a->head] = elem;
a->head = (a->head + 1) % 10;
a->num++;
return 1;

}
int extract_CA(struct CircularArray_t *a,

int *elem)
{ if (a->num == 0) return 0;

*elem = a->array[a->tail];
a->tail = (a->tail + 1) % 10;
a->num--;
return 1;

}
(suppose num++ e num-- atomic)

Consistency properties

(suppose num++ and num-- atomic)

C1: if (num == 0 || num == 10)
head == tail;

C2: if (0 < num < 10)
num == (head – tail) % 10

C3: num == NI - NE

C4: (insert x)
pre: if (num < 10)
post: num == num + 1 &&

array[(head-1)%10] = x;

C5: (extract &x)
pre: if (num > 0)
post: num == num –1 &&

x = array[(tail-1)%10];

C2, C3, C4

holds

head = 1
tail = 0

num = 1
head = 0
tail = 0

num = 0

Example 3: circular array - insert

Initial state:

head = 0; tail = 0; num = 0;

insert_CA (&queue, 5) ;

5

head = 1; tail = 0; num = 1;

C2: if (0 < num < 10)
num == (head – tail) % 10

C3: num == NI – NE

C4: insert_CA(&queue, x)
pre: if (num < 10)
post: num == num + 1 &&

array[(head-1)%10] = x;

tail
head

Example 3: circular array – insert (2)

insert_CA (&queue, 3) ;

5 3 Initial state:

head = 0; tail = 0; num = 0;

insert_CA (&queue, 5) ;

head = 1; tail = 0; num = 1;

head = 2; tail = 0; num = 2;

C2, C3, C4

hold

C2: if (0 < num < 10)
num == (head – tail) % 10

C3: num == NI – NE

C4: insert_CA(&queue, x)
pre: if (num < 10)
post: num == num + 1 &&

array[(head-1)%10] = x;

Example 3: circular array – insert (3)

tail
head

1 3 7 4 Initial state:

head = 9; tail = 5; num = 4;

insert_CA (&queue, 6) ;

head = 0; tail = 5; num = 5

head

C2, C3, C4

holdC2: if (0 < num < 10)
num == (head – tail) % 10

C3: num == NI – NE

C4: insert_CA (&queue, x)
pre: if (num < 10)
post: num == num + 1 &&

array[(head-1)%10] = x;

6

Example 3: circular array – extract

7 4 6 Initial state:

head = 0; tail = 5; num = 5;

tail

head

extract_CA (&queue, &elem) ;

head = 0; tail = 6; num = 4

tail

1 31

C2, C3, C5

hold
C2: if (0 < num < 10)

num == (head – tail) % 10

C3: num == NI – NE

C5: extract_CA (&queue, &x)
pre: if (num > 0)
post: num == num –1 &&

x = array[tail];

Example 3: the problem

● If the insert operation is performed by two processes,
some consistency property may be violated!

void *threadA(void *)
{

...
insert_CA(&queue, 5);
...

}

void *threadB(void *)
{

...
insert_CA(&queue, 2);
...

}

struct CircularArray_t queue;

7 46 3

Example 3: interference

7 46 3

Initial state:

head = 7; tail = 3; num = 4;

insert_CA (&queue, 5) ; (TA)

if (a->num == 10) return 0;
a->array[a->head] = 5;
a->head = (a->head + 1) % 10; (**)
a->num ++;
return 1;

insert_CA (&queue, 2) ; (TB)

if (a->num == 10) return 0;
a->array[a->head] = 2;
a->head = (a->head + 1) % 10; (*)
a->num ++;
return 1;

if (a->num == 10) return 0; (TA)
a->array[a->head] = 5; (TA)
if (a->num == 10) return 0; (TB)
a->array[a->head] = 2; (TB)
a->head = (a->head + 1) % 10;(TB) (*)
a->num ++; (TB)
return 1; (TB)
a->head = (a->head + 1) % 10;(TA) (**)
a->num ++; (TA)
return 1; (TA)

5

Final State:

head = 9; tail = 3; num = 6;

2 head (**)

head (*)

C4 is violated!

5 != array[head – 1]

Example 3: correctness

● The previous program is not correct
– It exist a possible interleaving of two insert

operations that leaves the resource in a inconsistent
state

● Proving the non-correctness is easy
– it suffices to find a counter example

● Proving the correctness is not easy
– it is necessary to prove the correctness for every

possible interleaving of every operation

Example 3: problem

● What if an insert and an extract are interleaved?
– Nothing bad can happen!!
– Proof

● if 0<num<10, insert_CA() and extract_CA() are
independent

● if num==0
– if extract_CA begins before insert_CA, it immediately returns 0,

so nothing bad can happen
– if insert_CA begins before, extract_CA will still return false, so it

cannot interfere with insert
● same thing when num==10

● Question: what happens if we exchange the
sequence of instructions in insert or extract?

Example 3: CircularArray
properties

● a) if more than one thread executes insert_CA()
– inconsistency!!

● b) if we have only two threads
– one threads calls insert_CA() and the other thread calls

extract_CA()
– no inconsistency!

● The order of the operations is important!
– a wrong order can make the object inconsistency even

under the assumption b)
● the case is when num is incremented but the data has not yet

been inserted
● in any case, the final result depends on the timings of the

dfferent requests (e.g, an insertion with the buffer full)

Example 3: questions

● Problem:
– In the previous example, we supposed that num++

and num-- are atomic operations
– What happens if they are not atomic?

● Question:
– Assuming that operation -- and ++ are not atomic,

can we make the circularArray safe under the
assumption b) ?

● Hint: try to substitute variable num with two boolean
variables: bool empty and bool full;

Critical sections

● Definitions
– The shared object where the conflict may happen is a

“resource”
– The parts of the code where the problem may happen

are called “critical sections”
● A critical section is a sequence of operations that cannot be

interleaved with other operations on the same resource
– Two critical sections on the same resource must be

properly sequentialized
– We say that two critical sections on the same resource

must execute in MUTUAL EXCLUSION
– There are two ways to obtain mutual exclusion

● Disabling the preemption (valid only for single-core systems)
● Implementing the critical section as an atomic operation, using

semaphores and mutexes

Critical sections: disabling
preemption

● Single core systems
– In some scheduler, it is possible to disable preemption

for a limited interval of time
– Problems:

● If a high priority critical thread needs to execute, it cannot make
preemption and it is delayed

● Even if the high priority task does not access the resource!

<disable preemption>
<critical section>
<enable preemption> no context

switch may happen
during the critical

section

Critical sections: atomic
operations

● There exist some general mechanisms to
implement mutual exclusion only between the
processes that uses a resource:

– semaphores

– mutexes

● Define a flag s for each resource
● Use lock(s)/unlock(s) around the critical section

int s;
...
lock(s);
<critical section>
unlock(s);
...

Synchronisation

● Mutual exclusion is not the only problem
– We need a way of synchronise two or more threads

● Example: producer/consumer
– Suppose we have two threads,

● One produces some integers and sends them to another
thread (PRODUCER)

● Another one takes the integer and elaborates it
(CONSUMER)

Producer Consumer

Producer/consumer

● The two threads have different speeds
– For example the producer is much faster than

the consumer
– We need to store the integers in a queue, so

that no data is lost
– Let’s use the CircularArray_t structure

Producer/consumer (2)

● Problems with this approach:
– If the queue is full, the producer actively waits
– If the queue is empty, the consumer actively

waits

void *producer(void *)
{

bool res;
int data;
while(1) {

<obtain data>
while (!insert_CA(&queue, data));

}
}

void *consumer(void *)
{

bool res;
int data;
while(1) {

while (!extract_CA(&queue, &data));
<use data>

}
}

struct CircularArray_t queue;

A more general approach

● We need to provide a general mechanism for
synchonisation and mutual exclusion

● Requirements
– Provide mutual exclusion between critical sections

● Avoid two insertions operation to interleave
– Synchronise two threads on one condition

● For example, block the producer when the queue is full

General mechanism: semaphores

● Djikstra proposed the semaphore mechanism
– A semaphore is an abstract entity that consists of

● A counter
● A blocking queue
● Operation wait
● Operation signal

– The operations on a semaphore are considered
atomic

Semaphores

● Semaphores are basic mechanisms for providing
synchronization
– It has been shown that every kind of synchronization

and mutual exclusion can be implemented by using
semaphores

– We will analyze possible implementation of the
semaphore mechanism later

typedef struct {
<blocked queue> blocked;
int counter;

} sem_t;

void sem_init (sem_t *s, int n);

void sem_wait (sem_t *s);
void sem_post (sem_t *s);

Note:
the real prototype
of sem_init is
slightly different!

Wait and signal

● A wait operation has the following behavior
– If counter == 0, the requiring thread is blocked

● It is removed from the ready queue
● It is inserted in the blocked queue

– If counter > 0, then counter--;
● A post operation has the following behavior

– If counter == 0 and there is some blocked thread,
unblock it

● The thread is removed from the blocked queue
● It is inserted in the ready queue

– Otherwise, increment counter

Semaphores

void sem_init (sem_t *s, int n)
{
 s->count=n;
 ...
}

void sem_wait(sem_t *s)
{
 if (counter == 0)

<block the thread>
 else

counter--;
}

void sem_post(sem_t *s)
{
 if (<there are blocked threads>)

<unblock a thread>
 else

counter++;
}

Signal semantics

● What happens when a thread blocks on a semaphore?
– In general, it is inserted in a BLOCKED queue

● Extraction from the blocking queue can follow different
semantics:
– Strong semaphore

● The threads are removed in well-specified order
● For example, FIFO order, priority based ordering, ...

– Signal and suspend
● After the new thread has been unblocked, a thread switch happens

– Signal and continue
● After the new thread has been unblocked, the thread that executed

the signal continues to execute

● Concurrent programs should not rely too much on the
semaphore semantic

Mutual exclusion with semaphores

● How to use a semaphore for critical sections
– Define a semaphore initialized to 1
– Before entering the critical section, perform a wait
– After leaving the critical section, perform a post

sem_t s;
...
sem_init(&s, 1);

void *threadA(void *arg)
{

...
sem_wait(&s);
 <critical section>
sem_post(&s);
...

}

void *threadB(void *arg)
{

...
sem_wait(&s);
 <critical section>
sem_post(&s);
...

}

Mutual exclusion with semaphores
(2)

semaphore

counter 10

sem_wait(); (TA)
<critical section (1)> (TA)
sem_wait() (TB)
<critical section (2)> (TA)
sem_post() (TA)
<critical section> (TB)
sem_post() (TB)

1

Synchronization

● How to use a semaphore for synchronization
– Define a semaphore initialized to 0
– At the synchronization point, follower performs a wait
– At the synchronization point, producer performs a post
– In the example, threadA blocks until threadB wakes it up

void *threadA(void *)
{

...
sem_wait(&s);
...

}

void *threadB(void *)
{

...
sem_post(&s);
...

}

– How can both A and B synchronize at the same point?

sem_t s;
...
sem_init(&s, 0);

Producer/consumer

● Consider a producer/consumer system
– One producer executes insert_CA()

● We want the producer to be blocked when the queue is full
● The producer will be unblocked when there is some space

again
– One consumer executes extract_CA()

● We want the consumer to be blocked when the queue is empty
● The consumer will be unblocked when there is some space

again
– First attempt: one producer and one consumer only

Producer/consumer (2)

struct CircularArray_t {
int array[10];
int head, tail;
sem_t empty, full;

}
void init_CA(struct CircularArray_t *c)
{ c->head=0; c->tail=0;
 sem_init(&c->empty, 0); sem_init(&c->full, 10); }

void insert_CA(struct CircularArray_t *c, int elem) {
sem_wait(&c->full);

c->array[c->head] = elem;
c->head = (c->head + 1) % 10;

sem_post(&c->empty);
}
void extract_CA(struct CircularArray_t *c, int &elem) {

sem_wait(&c->empty);
elem = c->array[c->tail];
c->tail = (c->tail + 1) % 10;

sem_post(&c->full);
}

Note: there is no member
called num as we had in
Example 3 (slide 23)

Producer/consumer: properties

● Notice that
– The value of the counter of empty is the number of

elements in the queue
● It is the number of times we can call extract without blocking

– The value of the counter of full is the complement of the
elements in the queue

● It is the number of times we can call insert without blocking

● Exercise
– Prove that the implementation is correct

● insert_CA() never overwrites elements
● extract_CA() always gets an element of the queue

Producers/consumers

● Now let’s combine mutual exclusion and
synchronization
– Consider a system in which there are

● Many producers
● Many consumers

– We want to implement synchronization
– We want to protect the data structure

Producers/consumers: does it
work?

struct CircularArray_t {
int array[10];
int head, tail;
sem_t full, empty;
sem_t mutex;

}
void init_CA(struct CircularArray_t *c)
{

c->head=0; c->tail=0;
sem_init(&c->empty, 0); sem_init(&c->full, 10); sem_init(&c->mutex, 1);

}

void insert_CA(struct CircularArray_t *c,
int elem)

{
sem_wait(&c->mutex);
 sem_wait(&c->full);
 c->array[c->head]=elem;
 c->head = (c->head+1)%10;
 sem_post(&c->empty);
sem_post(&c->mutex);

}

void extract_CA(struct CircularArray_t *c,
int *elem)

{
sem_wait(&c->mutex);
 sem_wait(&c->empty);
 elem = c->array[c->tail];
 c->tail = (c->tail+1)%10;
 sem_post(&c->full);
sem_post(&c->mutex);

}

Producers/consumers: correct
solution

void insert_CA(struct CircularArray_t *c,
int elem)

{
 sem_wait(&c->full);

 sem_wait(&c->mutex);
 c->array[c->head]=elem;
 c->head = (c->head+1)%10;
 sem_post(&c->mutex);

 sem_post(&c->empty);
}

void extract_CA(struct CircularArray_t *c,
int *elem)

{
 sem_wait(&c->empty);

 sem_wait(&c->mutex);
 elem = c->array[c->tail];
 c->tail = (c->tail+1)%10;
 sem_post(&c->mutex);

 sem_post(&c->full);
}

struct CircularArray_t {
int array[10];
int head, tail;
sem_t full, empty;
sem_t mutex;

}
void init_CA(struct CircularArray_t *c)
{

c->head=0; c->tail=0;
sem_init(&c->empty, 0); sem_init(&c->full, 10); sem_init(&c->mutex, 1);

}

Producers/consumers: deadlock
situation

● Deadlock situation
– A thread executes sem_wait(&c->mutex) and then

blocks on a synchronisation semaphore
– To be unblocked another thread must enter a critical

section guarded by the same mutex semaphore!
– So, the first thread cannot be unblocked and free the

mutex!
– The situation cannot be solved, and the two threads will

never proceed
● As a rule, never insert a blocking synchronization

inside a critical section!!!

Readers/writers

● One shared buffer
● Readers:

– They read the content of the buffer
– Many readers can read at the same time

● Writers
– They write in the buffer
– While one writer is writing no other reader or writer

can access the buffer
● Use semaphores to implement the resource

Readers/writers: simple
implementation

struct Buffer_t {
sem_t synch;
sem_t s_R;
int nr;

}
void init_B(struct Buffer_t *b)
{ sem_init(&b->synch, 1);
 sem_init(&b->s_R, 1);
 b->nr=0; }

void read_B(struct Buffer_t *b) {
sem_wait(&b->s_R);
 b->nr++;
 if (b->nr==1) sem_wait(&b->synch);
sem_post(&b->s_R);

<read the buffer>

sem_wait(&b->s_R);
 b->nr--;
 if (b->nr==0) sem_post(&b->synch);
sem_post(&b->s_R);

}

void write_B(struct Buffer_t *b) {
sem_wait(&b->synch);

 <write the buffer>

sem_post(&b->synch);
}

Readers/writers: more than one
pending writer

struct Buffer_t {
sem_t synch, mutex;
sem_t s_R, s_W;
int nr, nw;

};

void read_B(struct Buffer_t *b) {
sem_wait(&b->s_R);
 b->nr++;
 if (b->nr==1)

sem_wait(&b->synch);
sem_post(&b->s_R);
<read the buffer>
sem_wait(&b->s_R);
 b->nr--;
 if (b->nr==0)

sem_post(&b->synch);
sem_post(&b->s_R);

}

void write_B(struct Buffer_t *b) {
 sem_wait(&b->s_W);

 b->nw++;
 if (b->nw==1) sem_wait(&b->synch);
sem_post(&b->s_W);

sem_wait(&b->mutex);
<write the buffer>
sem_post(&b->mutex);

sem_wait(&b->s_W);
 b->nw--;
 if (b->nw==0) sem_post(&b->synch);
sem_post(&b->s_W);

}

void init_B(struct Buffer_t *b)
{
 sem_init(&b->synch, 1); sem_init(&b->mutex(1);
 sem_init(&b->s_R, 1); sem_init(&b->s_W, 1);
 b->nr=0; b->nw=0;
}

Readers/writers: starvation

● A reader will be blocked for a finite time
● The writer suffers starvation
● Suppose we have 2 readers (R1 and R2) and 1 writer W1

– Suppose that R1 starts to read
– While R1 is reading, W1 blocks because it wants to write
– R2 starts to read
– R1 finishes, but, since R2 is reading, W1 cannot be

unblocked
– Before R2 finishes to read, R1 starts to read again
– When R2 finishes, W1 cannot be unblocked because R1 is

reading
● A solution

– Readers should not be counted whenever there is a writer
waiting for them

Readers/writers: priority to
writers!

struct Buffer_t {
sem_t synch, synch1;
sem_t s_R, s_W;
int nr, nw;

};

void read_B(struct Buffer_t *b) {

sem_wait(&b->synch1);
 sem_wait(&b->s_R);
 b->nr++;
 if (b->nr==1) sem_wait(&b->synch);
 sem_post(&b->s_R);
sem_post(&b->synch1);

<read the buffer>

sem_wait(&b->s_R);
 b->nr--;
 if (b->nr==0) sem_post(&b->synch);
sem_post(&b->s_R);

}

void write_B(struct Buffer_t *b) {
sem_wait(&b->s_W);
 b->nw++;
 if (b->nw==1) sem_wait(&b->synch1);
sem_post(&b->s_W);

sem_wait(&b->synch);
 <write the buffer>
sem_post(&b->synch);

sem_wait(&b->s_W);
 b->nw--;
 if (b->nw == 0) sem_post(&b->synch1);
sem_post(&b->s_W);

}

void init_B(struct Buffer_t *b) {
 sem_init(&b->synch, 1); sem_init(&b->synch1, 1);
 sem_init(&b->s_R, 1); sem_init(&b->s_W, 1);
 b->nr=0; b->nw=0;
}

Readers/writers: problem

● Now, there is starvation for readers
● The readers/writers problem can be solved in general?

– No starvation for readers
– No starvation for writers

● Solution
– Maintain a FIFO ordering with requests

● If at least one writer is blocked, every next reader blocks
● If at least one reader is blocked, every next writer blocks

● We can do that using the private semaphores
technique

Private semaphores: when to
use it

● The private semaphores technique can be used every
time the system wants to specify the policy to be used
when waking up a particular thread/process

● Examples

– In the readers/writers problem, we want to avoid
starvation of both readers and writers

– When a resource becomes free, and there are more than
one process waiting, we want to activate a particular
proces following a given policy

Private semaphore: what is it?

● In general, when using a resource, a process will block
on a synchronization point because some kind of test
fails

– Example, a process tries to insert an element in a full
buffer. The “buffer full” is the synchronization test

● When the the process will block, it will block on a private
semaphore

● A private semaphore is a semaphore used only by one
process

– (or only by a class of processes)

● There are two ways for using a private semaphore

Private semaphores: solution 1

struct myresource_t {
sem_t mutex;
sem_t priv[MAXPROC];
...

}

Checking a condition to eventually block
void f1(struct myresource_t *r)
{
 sem_wait(&r->mutex);

if <condition> {
<resource allocation to i>
sem_post(&r->priv[i]);

}
else

<record that i is suspended >

 sem_post(&r->mutex);
 sem_wait(&r->priv[i]);
}

Changing a blocking condition
void f2(struct myresource_t *r) {
{
 int i;
 sem_wait(&r->mutex);

<release the resource>

if <wake up someone> {
i = <process to wake up>
<resource allocation to i>
<record that i is no more

suspended>
sem_post(&r->priv[i]);

}
sem_post(&r->mutex);

}

void myresource_init(...)
{

<mutex initialized to 1>
<private semaphores initialized to 0>
...

}

Private semaphores: notes to
solution 1

● The wait on the private semaphore is outside the mutex
critical region

● Each process blocks on a separate private semaphore

– In this way, the release can choose exactly which is the
task to wake up

● Disadvantages

– When acquiring, the wait on the private semaphore is
always done

– The resource allocation is done both in the acquisition
and in the release

Private semaphores: solution2

struct myresource_t {
sem_t mutex;
sem_t priv[MAXPROC];
...

}

void myresource_init(...)
{

<mutex initialized to 1>
<private semaphores initialized to 0>
...

}

Checking a condition to eventually block
void f1(struct myresource_t *r)
{
 sem_wait(&r->mutex);

if <not condition> {
<record that i is suspended>
sem_post(&r->mutex);
sem_wait(&r->priv[i].wait);
<record that i has been
 woken up>

}

<resource allocation to i>

sem_post(&r->mutex);

Changing a blocking condition
void f2(struct myresource_t *r) {
{
 int i;
 sem_wait(&r->mutex);

<release the resource>

if <wake up someone> {
i = <process to wake up>
sem_post(&r->priv[i]);

}
else

sem_post(&r->mutex);
}

Private semaphores: notes to
solution 2

● Using solution 2, it is hard to wake up more than one
process at the same time

Readers/writers: solution

struct Buffer_t {
int nbr, nbw;
int nr, nw;
sem_t priv_r, priv_w;
sem_t m;

}

void Buffer_init(struct Buffer_t *b)
{

b->nbw=0; b->nbr=0;
b->nr=0; b->nw=0;
sem_init(&b->priv_r,0);
sem_init(&b->priv_w,0);
sem_init(&b->m,1);

}

Readers/writers: solution (2)

void Buffer_read(struct Buffer_t b)
{

sem_wait(&b->m);
if (nw>0 || nbw>0)

nbr++;
else {

nr++;
sem_post(&b->priv_r);

}
sem_post(&b->m);
sem_wait(&b->priv_r);

<read buffer>;

sem_wait(&b->m);
nr--;
if (nbw>0 && nr == 0) {

nbw--; nw++;
sem_post(&b->priv_w);

}
sem_post(&b->m);

}

void Buffer_write(struct Buffer_t b)
{

sem_wait(&b->m);
if (nr>0 || nw>0)

nbw++;
else {

nw++;
sem_post(&b->priv_w);

}
sem_post(&b->m);
sem_wait(&b->priv_w);

<write buffer>;

sem_wait(&b->m);
nw--;
if (nbr>0)

while (nbr>0)
{ nbr--; nr++; sem_post(&b->priv_r); }

else if (nbw>0)
{ nbw--; nw++; sem_post(&b->priv_w); }

sem_post(&b->m);
} // NB: nw can have only values 0 or 1!!

Private semaphores: final notes

● These general rules apply

– When a process blocks on a private semaphore, it has to
leave some information in the shared structure saying it
has blocked

– Also the fact that a resource is used by a process is
recorded in the internal data structures

– The assignment of a resource to a process is separated
from the use of the resource

– Note that the usage of the resource does not need
anymore to be protected by a mutex

Semaphore implementation

● System calls
– sem_wait() and sem_post() involve a possible thread-

switch
– Therefore they must be implemented as system calls!

● One blocked thread must be removed from state RUNNING
and be moved in the semaphore blocking queue

● Protection:
– A semaphore is itself a shared resource
– sem_wait() and sem_post() are critical sections!
– They must run with interrupt disabled and

by using lock() and unlock() primitives

Semaphore implementation (2)

void sem_wait(sem_t *s)
{

spin_lock_irqsave();
if (counter==0) {

<block the thread>
schedule();

} else s->counter--;
spin_lock_irqrestore();

} void sem_post(sem_t *s)
{

spin_lock_irqsave();
if (counter== 0) {

<unblock a thread>
schedule();

} else s->counter++;
spin_lock_irqrestore();

}

Monitors

● Monitors are a language structure equivalent to
semaphores, but cleaner
– A monitor is similar to an object in a OO language
– It contains variables and provides procedures to other

software modules
– Only one thread can execute a procedure at a certain

time
● Any other thread that has invoked the procedure is blocked

and waits for the first threads to exit
● Therefore, a monitor implicitely provides mutual exclusion

– The source code that is used to implement the mutual
exclusion is automatically inserted by the compiler

Condition variables

● Monitors support synchronization with Condition Variables
– A condition variable is a blocking queue
– Two operations are defined on a condition variable

● cond_wait() -> suspends the calling thread on the queue
● cond_signal() -> resumes execution of one thread blocked on the

queue

● Important note:
– cond_wait() and cond_signal() operation on a condition

variable are different from sem_wait and sem_post on a
semaphore!

– There is not any counter in a condition variable!
– If we do a signal on a condition variable with an empty

queue, the signal is lost
– There are 6 ways to implementa monitor construct

● we will only look at the POSIX approach
(that is the same used by the MESA language)

Condition variables (2)

● When a process blocks on a condition variable, the
mutual exclusion is released to let someone else modify
the shared data structure

● When it is then woken up by someone, it has to check
again for the blocking condition

– Because someone could have modified the data structure

● That is, condition variables are always used inside a
while()

void CircularArray_insert(
 struct CircularArray_t *ca,
 int elem
) synchronized

{
while (num==10) cond_wait(&full);
array[head]=elem;
head = (head+1)%10;
num++;
if (num==1) cond_signal(empty);

}

CircularArray with monitors

struct CircularArray_t {
int array[10];
int head, tail, num;
Condition empty, full;

} queue;

void CircularArray_extract(int &elem)
 synchronized
{

while (num== 0) cond_wait(&empty);
elem = array[tail];
tail = (tail+1)%10;
num--;
if (num == 9) cond_signal(&full);

}

void CircularArray_init(struct CircularArray_t *ca)
{

ca->head = 0;
ca->tail = 0;
ca->num =0;

}

Monitors and POSIX

● POSIX is an interface, not a language
● For that reason, a POSIX program has to explicitly say

where a critical section starts and ends
● Mutexes are used to bound a critical section

– A mutex is a binary semaphore with two functions, lock and
unlock

● Condition variables must stay inside a while loop

void CircularArray_insert(struct CircularArray_t *ca,
 int elem)

{
pthread_mutex_lock(&ca->mymutex);
while (num==10) pthread_cond_wait(&ca->full,&ca->mymutex);
array[head]=elem;
head = (head+1)%10;
num++;
if (num==1) pthread_cond_signal(&ca->empty);
pthread_mutex_unlock(&ca->mymutex);

}

Policies and monitors

● Waking up policies can be implemented using
private conditions

● The idea is the same of the private semaphores, but
implemented using condition variables :-)

Problem

● Implement the readers/writers problem with
monitors
– Hint: follow the previous solution with semaphores!

Models of concurrency

Message Passing

● Message passing systems are based on the
basic concept of message

● Two basic operations
– send(destination, message);

● send can be synchronous or asynchronous

– receive(source, &message);
● receive can be symmetric or asymmetric

Message passing

● The producer executes send(consumer,
data)

● the consumer executes receive(producer,
data)

● no need for a special communication structure
(already contained in the send/receive
semantic)

Producer Consumer

Producer/Consumer with MP

Resources and message
passing

● There are no shared resources in the message
passing model
– all the resources are allocated statically, accessed in

a dedicated way

● Each resource is handled by a manager process
that is the only one that has right to access to a
resource

● The consistency of a data structure is
guaranteed by the manager process
– there is no more competition, only cooperation!!!

● synchronous send/receive
– no buffers!

producer:
 s_send(consumer, d);

consumer:
 s_receive(producer, &d);

producer consumer

send

receive

blocked

producer consumer

send

receive

blocked

Synchronous communication

● asynchronous send / synchronous receive
– there is probably a send buffer somewhere

producer:
 a_send(consumer, d);

consumer:
 s_receive(producer, &d);

producer consumer

send

receive

producer consumer

send

receive

blocked

Async send/ sync receive

● Symmetric receive
– receive(source, &data);
– the programmer wants a message from a given

producer

● Asymmetric receive
– source = receive(&data);
– often, we do not know who is the sender

● imagine a web server;
● the programmer cannot know in advance the address of

the browser that will request the service
● many browsers can ask for the same service

Asymmetric receive

Remote procedure call

● In a client-server system, a client wants to
request an action to a server
– that is typically done using a remote procedure call

(RPC)

client server

RPC

blocked

● In message passing
– each resource needs one threads manager
– the threads manager is responsible for giving

access to the resource
● Example: let’s try to implement mutual exclusion

with message passing primitives
– one thread will ensure mutual exclusion
– every thread that wants to access the resource must

● send a message to the manager thread
● access the critical section
● send a message to signal the leaving of the critical

section

Massage passing systems

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
s_receive_from(source, &d);

}
}

void * thread(void *)
{

int d;
while (true) {

s_send(manager, d);
<critical section>
s_send(manager, d);

}
}

manager

TA

TB

<critical section>

<critical section>

rec_from rec rec_fromrec

send send

send send

Sync send / sync receive

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
a_send(source,d);
s_receive_from(source,&d);

}
}

void * thread(void *)
{

int d;
while (true) {

a_send(manager, d);
s_receive_from(manager, &d);
<critical section>
a_send(manager, d);

}
}

manager

TA

TB

<critical section>

<critical section>

rec_from rec rec_fromrec send send

With async send and sync
receive

● Implement readers/writers with message
passing

● Hints:
– define a manager thread
– the service type (read/write) can be passed as data
– use asynchronous send and synchronous receive
– use symmetric and asymmetric receive

Problem

Deadlocks

● Deadlock is a situation where a group of threads
is permanently blocked waiting for a resource

● Deadlock can happen in many subtle cases
– example: dining philosophers

● Here we will study ways of avoiding deadlock
● Livelock is the situation where a group of

threads tries to get some resource, but they
never succeed
– the idea is that they have a non-blocking wait

– example: dining philosophers with non-blocking wait

● Deadlocks and livelocks can be total or partial

Deadlock and livelock

DEADLOCK!!

void *threadA(void *)
{

...
sem_wait(&s1);
sem_wait(&s2);
...
sem_post(&s2);
sem_post(&s1);
...

}

void *threadB(void *)
{

...
sem_wait(&s2);
sem_wait(&s1);
...
sem_post(&s2);
sem_post(&s1);
...

}

Semaphore s1(1);
Semaphore s2(1);

TA

TB

sem_wait(&s1)

sem_wait(&s2)

sem_wait(&s2)

sem_wait(&s1)

Example of deadlock

TA

TB

get s1

get s2

get s2

get s1
Deadlock
inevitable

release s2

release s1

release s1

release s2

Graphical situation

Deadlock
inevitable

TA

TB

get s1

get s2

get s2

get s1

release s2

release s1

release s1

release s2

Graphical situation

TA

TB

get s1

get s2
get s2

get s1

release s2

release s1

release s1

release s2

Example with no deadlock

● Reusable resources
– it can be safely used by only one thread at time and

is not depleted by the use
– threads must request the resource and later release

it, so it can be reused by other threads
– examples are processor, memory, semaphores, etc.

● Consumable resources
– it is created and destroyed dynamically
– once the resource is acquired by a thread, it is

immediately “destroyed” and cannot be reused
– examples are messages in a FIFO queue,

interrupts, I/O data, etc.

Consumable and reusable
resources

● Bad situations can happen even when the
resource is not “on-off”

● Consider a memory allocator
– suppose that the maximum memory allocable is 200

Kb

void * threadA(void *)
{

request(80kb);
...
request(60kb);
...
release(140kb);

}

void * threadB(void *)
{

request(70kb);
...
request(80kb);
...
release(150kb);

}

Deadlock with reusable
resources

void *threadA(void *)
{

s_receive_from(threadB, msg1);
...
s_send(threadB, msg2);
...

}

void *threadB(void *)
{

s_receive_from(threadA, msg1);
...
s_send(threadA, msg2);
...

}

TA

TB

s_receive_from(threadB,msg1)

s_receive_from(threadA,msg1)

Deadlock with consumable
resources

● Three conditions
– dynamic allocation of dedicated resources (in

mutual exclusion)
● only one process may use the resource at the same time

– hold and wait
● a process may hold allocated resources when it blocks

– no preemption
● the resource cannot be revoked

(note: the CPU is a revokable resource)

Conditions for deadlock

● If the three above conditions hold and
– circular wait

● a closed chain of threads exists such that each
thread holds at least one resources needed by
the next thread in the chain

● Then a deadlock can occur!
● These are necessary and sufficient conditions

for a deadlock

Conditions for deadlock

● The basic idea is to avoid that one of the
previous conditions hold

● To prevent deadlock from happening we can
distinguish two class of techniques
– static: we impose strict rules in the way resources

may be requested so that a deadlock cannot occur
– dynamic: dynamically, we avoid the system to enter

in dangerous situations
● Three strategies

– deadlock prevention (static)
– deadlock avoidance (dynamic)
– deadlock detection (dynamic)

How to solve the problem of
deadlock

Deadlock prevention: three
methods

● Take all the resources at the same time
● Preempt a thread and give the resource to

someone else
● Resource allocation in a given order

● Hold and wait
– we can impose the tasks to take all resources at the

same time with a single operation
– this is very restrictive! Even if we use the resource

for a small interval of time, we must take it at the
beginning!

– reduces concurrency

Deadlock prevention:
conditions

● No preemption
– this technique can be done only if we can actually

suspend what we are doing on a resource and give
it to another thread

– for the “processor” resource, this is what we do with
a thread switch!

– for other kinds of resources, we should “undo” what
we were doing on the resource

– this may not be possible in many cases!

Deadlock prevention:
conditions

● Circular wait
– This condition can be prevented by defining a linear

ordering of the resources
– for example: we impose that each thread must

access resources in a certain well-defined order

void *threadA(void *)
{

...
sem_wait(&s1);
sem_wait(&s2);
...
sem_post(&s2);
sem_post(&s1);
...

}

void *threadB(void *)
{

...
sem_wait(&s2);
sem_wait(&s1);
...
sem_post(&s2);
sem_post(&s1);
...

}

Deadlock prevention:
conditions

● Let us define an oriented graph
– a vertex can be

● a thread (round vertex)
● a resource (square vertex)

– an arrow from a thread to a resource denotes that
the thread requires the resource

– an arrow from a resource to a thread denotes that
the resource is granted to the thread

● Deadlock definition
– a deadlock happens if at some point in time there is

a cycle in the graph

Deadlock prevention: why this
strategy works?

TA

TB

S1

S2

void *threadA(void *)
{

...
sem_wait(&s1);
sem_wait(&s2);
...
sem_post(&s2);
sem_post(&s1);
...

}

void *threadB(void *)
{

...
sem_wait(&s2);
sem_wait(&s1);
...
sem_post(&s2);
sem_post(&s1);
...

}

Deadlock prevention: graph

● If all threads access resources in a given order,
a deadlock cannot occur

● Proof (by contradiction):
– suppose a deadlock occurs. Then, there is a cycle
– by hypothesis all threads access resources in order
– each thread is blocked on a resource that has an

order number grater than the resources it holds
– starting from a thread and following the cycle, the

order number of the resource increases. However,
since there is a cycle, we go back to the first thread.
Then there must be a thread T that holds a resource
Ra and requests a Resource Rb with Ra < Rb

– this is a contradiction!

Deadlock prevention: theorem

● This technique consists in monitoring the
system to avoid deadlock
– we check the behaviour of the system
– if we see that we are going into a dangerous

situation, we block the thread that is doing the
request, even if the resource is free

– that algorithm is called the Banker's algorithm
● we skip it :-)

Deadlock avoidance

● In this strategy, we monitor the system to check
for deadlocks after they happen
– we look for cycles between threads and resources
– how often should we look?

● it is a complex thing to do, that takes processing time
● a good point to do that is when we lock (but it is

computationally expensive)

– once we discover deadlock, we must recover
● The idea is to

– kill some blocked thread
– return an error in the wait statement if there is a

cycle
● that is the POSIX approach

Deadlock detection

1. Abort all threads
 used in almost all OS: the simplest thing to do.

2. Check point
 all threads define safe check points: when the OS

discovers a deadlock, all involved threads are
restarted to a previous check point
 Problem: they can go in the same deadlock again!

3. Abort one thread at time
 threads are aborted one after the other until

deadlock disappears

4. Successively preempt resources
 preempt resources one at time until the deadlock

disappears

Recovery strategies

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113

