
An Introduction to

Parallel Architectures

Marko Bertogna

marko.bertogna@unimore.it

[Courtesy: Andrea Marongiu]

1

Impact of Parallel Architectures

• From cell phones to supercomputers

• In regular CPUs as well as GPUs

2

Parallel HW Processing

• Why?

• Which types?

• Which novel issues?

3

Why Multicores?
The SPECint performance of the hottest chip grew by 52% per year from 1986 to 2002, and

then grew only 20% in the next three years (about 6% per year).

Diminishing returns from

uniprocessor designs

[from Patterson & Hennessy]

4

Power Wall

• The design goal for the late

1990’s and early 2000’s was to

drive the clock rate up.

• by adding more transistors

to a smaller chip.

[from Patterson & Hennessy]

• Unfortunately, this increased

the power dissipation of the

CPU chip beyond the capacity

of inexpensive cooling

techniques

5

Roadmap for CPU Clock Speed: Circa 2005

Here is the result of the best thought in 2005. By 2015, the clock speed

of the top “hot chip” would be in the 20 – 25 GHz range.

[from Patterson & Hennessy]

6

The CPU Clock Speed Roadmap

(A Few Revisions Later)

This reflects the practical experience gained with dense chips that were literally

“hot”; they radiated considerable thermal power and were difficult to cool.

Law of Physics: All electrical power consumed is eventually radiated as heat.

[from Patterson & Hennessy]

7

The Multicore Approach

Multiple cores on the same chip

– Simpler

– Slower

– Less power demanding

8

Transition to Multicore

Sequential App
Performance

9

Intel Xeon (18cores)

The trend goes on…

10

Flynn Taxonomy of parallel computers

11

Data streams

Single Parallel

Instruction

Streams

Single SISD SIMD

Multiple MISD MIMD

Alternative Kinds of Parallelism:

Single Instruction/Single Data Stream

• Single Instruction,

Single Data stream

(SISD)

– Sequential computer

that exploits no

parallelism in either the

instruction or data

streams. Examples of

SISD architecture are

traditional uniprocessor

machines

12

Processing Unit

Alternative Kinds of Parallelism:

Multiple Instruction/Single Data Stream

• Multiple Instruction,

Single Data streams

(MISD)

– Computer that exploits

multiple instruction

streams against a single

data stream for data

operations that can be

naturally parallelized. For

example, certain kinds of

array processors.

– No longer commonly

encountered, mainly of

historical interest only 13

Alternative Kinds of Parallelism:

Single Instruction/Multiple Data Stream

• Single Instruction,
Multiple Data streams
(SIMD)

– Computer that exploits
multiple data streams
against a single
instruction stream to
operations that may be
naturally parallelized,
e.g., SIMD instruction
extensions or Graphics
Processing Unit (GPU)

14

Alternative Kinds of Parallelism:

Multiple Instruction/Multiple Data Streams

• Multiple Instruction,

Multiple Data streams

(MIMD)

– Multiple autonomous

processors simultaneously

executing different

instructions on different

data.

– MIMD architectures

include multicore and

Warehouse Scale

Computers (datacenters)

15

Flynn Taxonomy of parallel computers

• From 2011, SIMD and MIMD most common parallel computers

• Most common parallel processing programming style: Single

Program Multiple Data (“SPMD”)
– Single program that runs on all processors of a MIMD

– Cross-processor execution coordination through conditional expressions

(thread parallelism)

• SIMD (aka hw-level data parallelism): specialized function units,

for handling lock-step calculations involving arrays
– Scientific computing, signal processing, multimedia (audio/video processing)

16

Data streams

Single Parallel

Instruction

Streams

Single SISD: Intel Pentium 4 SIMD: SSE x86, ARM neon, GPGPUs, …

Multiple MISD: No examples today MIMD: SMP (Intel, ARM, …)

SIMD Architectures
• Data parallelism: executing one operation on

multiple data streams
– Single control unit
– Multiple datapaths (processing elements – PEs)

running in parallel
• PEs are interconnected and exchange/share data as directed

by the control unit
• Each PE performs the same operation on its own local data

• Example to provide context:
– Multiplying a coefficient vector by a data vector

(e.g., in filtering)
y[i] := c[i] × x[i], 0 ≤ i < n

Slide 17

18

“Advanced Digital Media Boost”

• To improve performance, SIMD instructions

– Fetch one instruction, do the work of multiple instructions

Example: SIMD Array Processing

19

for each f in array
f = sqrt(f)

for each f in array
{

load f to the floating-point register
calculate the square root
write the result from the register to memory

}

for each 4 members in array
{

load 4 members to the SIMD register
calculate 4 square roots in one operation
write the result from the register to memory

}

SISD

SIMD

Data Level Parallelism and SIMD

• SIMD wants adjacent values in memory that

can be operated in parallel

• Usually specified in programs as loops

for(i=1000; i>0; i=i-1)

x[i] = x[i] + s;

• How to obtain more data level parallelism

than available in a single iteration of a loop?

• Unroll loop and adjust iteration rate

20

Loop Unrolling

Loop Unrolling can be implemented from C code

for(i=1000; i>0; i=i-1)
x[i] = x[i] + s;

into

for(i=1000; i>0; i=i-4)
{
x[i] = x[i] + s;
x[i-1] = x[i-1] + s;
x[i-2] = x[i-2] + s;
x[i-3] = x[i-3] + s;

}

21

Loop Unrolling (MIPS)

Assumptions:

- R1 is initially the address of the element in the array with the highest

address

- F2 contains the scalar value s

- 8(R2) is the address of the last element to operate on.

Loop:

1. l.d F0, 0(R1) ; F0=array element

2. add.d F4,F0,F2 ; add s to F0

3. s.d F4,0(R1) ; store result

4. addui R1,R1,#-8 ; decrement pointer 8 byte

5. bne R1,R2,Loop ; repeat loop if R1 != R2

for(i=1000; i>0; i=i-1)

x[i] = x[i] + s;

22

Loop Unrolled

Loop: l.d F0,0(R1)

add.d F4,F0,F2

s.d F4,0(R1)

l.d F6,-8(R1)

add.d F8,F6,F2

s.d F8,-8(R1)

l.d F10,-16(R1)

add.d F12,F10,F2

s.d F12,-16(R1)

l.d F14,-24(R1)

add.d F16,F14,F2

s.d F16,-24(R1)

addui R1,R1,#-32

bne R1,R2,Loop

NOTE:

1. Different Registers eliminate stalls

2. Only 1 Loop Overhead every 4 iterations

3. This unrolling works if loop_limit(mod 4) = 0

23

Loop Unrolled Scheduled

4 Loads side-by-side: Could replace with 4 wide SIMD

Load

4 Adds side-by-side: Could replace with 4 wide SIMD Add

4 Stores side-by-side: Could replace with 4 wide SIMD Store

Loop: l.d F0,0(R1)

l.d F6,-8(R1)

l.d F10,-16(R1)

l.d F14,-24(R1)

add.d F4,F0,F2

add.d F8,F6,F2

add.d F12,F10,F2

add.d F16,F14,F2

s.d F4,0(R1)

s.d F8,-8(R1)

s.d F12,-16(R1)

s.d F16,-24(R1)

addui R1,R1,#-32

bne R1,R2,Loop

24

Generalizing Loop Unrolling

• A loop of n iterations

• k copies of the body of the loop

Then we will run the loop with 1 copy of the

body n(mod k) times and

with k copies of the body floor(n/k) times

25

26

MIMD Architectures

• Multicore architectures

• At least 2 processors interconnected via a

communication network

– abstractions (HW/SW interface)

– organizational structure to realize abstraction efficiently

MIMD Architectures

• Thread-Level parallelism
– Have multiple program counters

– Targeted for tightly-coupled shared-memory
multiprocessors

• For n processors, need n threads

• Amount of computation assigned to each thread
= grain size
– Threads can be used for data-level parallelism, but the

overheads may outweigh the benefit

27

MIMD Architectures

• And what about memory?

• How is data accessed by multiple cores?

• How to design accordingly the memory
system?

• How do traditional solutions from
uniprocessor systems affect multicores?

28

The Memory Gap

• Bottom-line: memory access is increasingly expensive and
CA must devise new ways of hiding this cost

H&P

Fig. 5.2

1

10

100

1000

10000

100000

19
80

19
85

19
90

19
95

20
00

20
05

P
er

fo
rm

an
ce

Memory CPU

29

The memory wall

• How do multicores attack the memory wall?

• Same issue as uniprocessor systems

– By building on-chip cache hierarchies

30

Memory Hierarchy

31

The memory wall

• How do multicores attack the memory wall?

• Same issue as uniprocessor systems

– By building on-chip cache hierarchies

• Which novel issues arise?

– Coherence

– Consistency

– Scalability

32

33

Communication models: Shared Memory

• Coherence problem
• Memory consistency issue
• Synchronization problem

34

Communication models: Shared memory

• Shared address space

• Communication primitives:

– load, store, atomic swap

Two varieties:

• Physically shared => Symmetric Multi-Processors

(SMP)

– usually combined with local caching

• Physically distributed => Distributed Shared Memory

(DSM)

35

SMP: Symmetric Multi-Processor

• Memory: centralized with uniform access time (UMA) and bus

interconnect, I/O

• Examples: Sun Enterprise 6000, SGI Challenge, Intel

36

DSM: Distributed Shared Memory

• Nonuniform access time (NUMA) and scalable

interconnect (distributed memory)

37

Shared Address Model Summary

• Each processor can address every physical location in

the machine

• Each process can address all data it shares with other

processes

• Data transfer via load and store

• Data size: byte, word, ... or cache blocks

• Memory hierarchy model applies:

– communication moves data to local proc. cache

38

Communication models: Message Passing

• Communication primitives

– e.g., send, receive library calls

– standard MPI: Message Passing Interface

• www.mpi-forum.org

• Note that MP can be built on top of SM and viceversa!

39

Message Passing Model

• Explicit message send and receive operations

• Send specifies local buffer + receiving process on

remote computer

• Receive specifies sending process on remote

computer + local buffer to place data

• Typically blocking communication, but may use DMA

40

Message passing communication

41

Communication Models: Comparison
• Shared-Memory (used by e.g. OpenMP)

– Compatibility with well-understood (language) mechanisms

– Ease of programming for complex or dynamic communications

patterns

– Shared-memory applications; sharing of large data structures

– Efficient for small items

– Supports hardware caching

• Messaging Passing (used by e.g. MPI)

– Simpler hardware

– Explicit communication

– Implicit synchronization (with any communication)

42

Three fundamental issues for shared

memory multiprocessors
• Coherence,

about: Do I see the most recent data?

• Consistency,
about: When do I see a written value?

– e.g. do different processors see writes at the same time
(w.r.t. other memory accesses)?

• Synchronization
How to synchronize processes?

– how to protect access to shared data?

43

Three fundamental issues for shared

memory multiprocessors
• Coherence,

about: Do I see the most recent data?

• Consistency,
about: When do I see a written value?

– e.g. do different processors see writes at the same time
(w.r.t. other memory accesses)?

• Synchronization
How to synchronize processes?

– how to protect access to shared data?

44

Coherence problem, in single CPU system

timet2t1t0

45

Coherence problem, in Multi-Proc system

46

What Does Coherency Mean?

• Discipline that ensures that changes in the values of
shared operands are propagated throughout the
system in a timely fashion

• Different levels are possible:

– Every write operation appears to occur instantaneously

• Too expensive and inefficient

– All processors see exactly the same sequence of changes of
values for each separate operand

– Different processors may see an operand and assume
different sequences of values

• non-coherent behavior

47

Two rules to ensure coherency

• “If P1 writes x and P2 reads it, P1’s write will be seen

by P2 if the read and write are sufficiently far apart”

• Writes to a single location are serialized:

seen in one order

– ‘Latest’ write will be seen

– Otherwise could see writes in illogical order

(could see older value after a newer value)

Shared Memory and Caches

• What if?

– Processors 1 and 2 read Memory[1000] (value 20)

48

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

1000

20

1000

1000 1000

20

0 1 2

Shared Memory and Caches

• What if?

– Processors 1 and 2 read Memory[1000]

– Processor 0 writes Memory[1000] with 40

49

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

Processor 0

Write

Invalidates

Other Copies

1000

1000 40

1000 40

Keeping Multiple Caches Coherent

• Architect’s job: shared memory => keep cache values

coherent

• Idea: When any processor has cache miss or writes,

notify other processors via interconnection network

– If only reading, many processors can have copies

– If a processor writes, invalidate all other copies

• Shared written result can “ping-pong” between

caches

50

51

Shared Memory Multiprocessor

Use snoopy mechanism to keep all processors’ view of memory
coherent

M1

M2

M3

Snoopy
Cache

DMA

Physical
Memory

Memory
Bus

Snoopy
Cache

Snoopy
Cache

DISKS

52

Snoopy Cache Coherence Protocols

write miss:
the address is invalidated in all other
caches before the write is performed

read miss:
if a dirty copy is found in some cache, a write-
back is performed before the memory is read

MSI Protocol States

• Modified: The cache modified the block

– The data in the cache is inconsistent with the
backing store (e.g., main memory)

– Cache must write-back the block when evicted

• Shared: The block is unmodified

– The cache can evict the data without writing it to
the backing store.

• Invalid: The block is not present in the cache

– It must be fetched from memory or another cache

53

54

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
I: Invalid

Each cache line has state bits

Address tag

state
bits Write miss

(P1 gets line from memory)

Other processor
intent to write
(P1 writes back)

Read miss
(P1 gets line from memory)

Other processor
intent to write

Read by any
processor

P1 reads
or writes

Cache state in
processor P1

Other processor reads
(P1 writes back)

55

Two Processor Example
(Reading and writing the same cache line)

M

S I

Write miss

Read
miss

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

Read
miss

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads

P1 writes

P2 reads
P2 writes

P1 writes

P2 writes

P1 reads

P1 writes

56

Observation

• If a line is in the M state then no other cache
can have a copy of the line!
– Memory stays coherent, multiple differing copies

cannot exist

M

S I

Write miss

Other processor
intent to write

Read
miss

Other processor
intent to write

Read by any
processor

P1 reads
or writes

Other processor reads
P1 writes back

MESI: An Enhanced MSI protocol

• Adds an E state to MSI

– Exclusive but unmodified

– Data is only in this cache and is clean

• It matches main memory

– A read request from another cache will change it

to Shared

– Writing it will change it to Modified

• No invalidation needed since it was exclusive!

• Increased performance for private data

57

58

MESI: An Enhanced MSI protocol

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
I: Invalid

Each cache line has a tag

Address tag

state
bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
processor

Other processor reads

P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent
to write

Read miss,
not sharedOther

processor
reads

Other processor
intent to write,
P1 writes back

Considerations on MESI

• A read can be satisfied in any state except Invalid
– An Invalid line must be fetched to S or E state

• A write can be satisfied in M or E
– A Shared line must first invalidate other copies

• Broadcast operation: Request For Ownership (RFO)

• S,E,I lines can be always discarded
– A Modified line must be written back first

• A Modified line must snoop other read attempts
– Back-off the reader, write-back, and change to Shared

• A Shared line must listen for invalidate/RFO requests
– Change to Invalid

• An Exclusive line must listen for read requests
– Change to Shared

59

60

Performance of Symmetric

Shared-Memory Multiprocessors

Cache performance is combination of:

1. Uniprocessor cache miss traffic

2. Traffic caused by communication
– Results in invalidations and subsequent cache misses

• Adds 4th C: coherence miss

– Joins Compulsory, Capacity, Conflict

– (Sometimes called a Communication miss)

61

Coherency Misses

1. True sharing misses arise from the communication of
data through the cache coherence mechanism
• Invalidates due to 1st write to shared block

• Reads by another CPU of modified block in different cache

• Miss would still occur if block size were 1 word

2. False sharing misses when a block is invalidated
because some word in the block, other than the one
being read, is written into
• Invalidation does not cause a new value to be

communicated, but only causes an extra cache miss

• Block is shared, but no word in block is actually shared
⇒ miss would not occur if block size were 1 word

62

False Sharing

state blk addr data0 data1 ... dataN

A cache block contains more than one word

Cache-coherence is done at the block-level and
not word-level

Suppose M1 writes wordi and M2 writes wordk and
both words have the same block address.

What can happen?

63

Example: True v. False Sharing v.

Hit?

Time P1 P2 True, False, Hit? Why?
1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

• Assume x1 and x2 in same cache block.

P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss

64

MP Performance 4 Processor

Commercial Workload: OLTP, Decision Support (Database),

Search Engine

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

1 MB 2 MB 4 MB 8 MB

Cache size

Instruction
Capacity/Conflict
Cold
False Sharing
True Sharing

• True sharing and

false sharing

unchanged going

from 1 MB to 8 MB
(L3 cache)

• Uniprocessor cache

misses improve with

cache size increase
(Instruction,

Capacity/Conflict,

Compulsory)

65

MP Performance 2MB Cache

Commercial Workload: OLTP, Decision Support

(Database), Search Engine

• True sharing,

false sharing

increase going

from 1 to 8

CPUs

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8

Processor count

Instruction
Conflict/Capacity
Cold
False Sharing
True Sharing

66

A Cache Coherent System Must:
• Provide set of states, state transition diagram, and

actions

• Manage coherence protocol
– (0) Determine when to invoke coherence protocol

– (a) Find info about state of address in other caches to
determine action

• whether need to communicate with other cached copies

– (b) Locate the other copies

– (c) Communicate with those copies (invalidate/update)

• (0) is done the same way on all systems
– state of the line is maintained in the cache

– protocol is invoked if an “access fault” occurs on the line

• Different approaches distinguished by (a) to (c)

67

Bus-based Coherence
• All of (a), (b), (c) done through broadcast on bus

– faulting processor sends out a “search”

– others respond to the search probe and take necessary action

• Could do it in scalable network too
– broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t scale with
number of processors, P
– on bus, bus bandwidth doesn’t scale

– on scalable network, every fault leads to at least P network
transactions

• Scalable coherence:
– can have same cache states and state transition diagram

– different mechanisms to manage protocol

Need for a more scalable protocol

• Snoopy schemes do not scale because they rely
on broadcast

• Hierarchical snoopy schemes have the root as a
bottleneck

• Directory based schemes allow scaling

– They avoid broadcasts by keeping track of all CPUs
caching a memory block, and then using point-to-
point messages to maintain coherence

– They allow the flexibility to use any scalable point-to-
point network

68

69

Scalable Approach: Directories

• Every memory block has associated directory

information

– keeps track of copies of cached blocks and their states

– on a miss, find directory entry, look it up, and

communicate only with the nodes that have copies if

necessary

– in scalable networks, communication with directory and

copies is through network transactions

• Many alternatives for organizing directory

information

70

Basic Operation of Directory

• k processors.

• With each cache-block in memory:
k presence-bits, 1 dirty-bit

• With each cache-block in cache:
1 valid bit, and 1 dirty (owner) bit

• Read from main memory by processor i:

• If dirty-bit OFF then { read from main memory; turn p[i] ON; }

• if dirty-bit ON then { recall line from dirty proc (downgrade cache
state to shared); update memory; turn dirty-bit OFF; turn p[i] ON;
supply recalled data to i;}

• Write to main memory by processor i:

• If dirty-bit OFF then {send invalidations to all caches that have the
block; turn dirty-bit ON; turn p[i] ON; ... }

