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Impact of Parallel Architectures

• From cell phones to supercomputers

• In regular CPUs as well as GPUs
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Parallel HW Processing

• Why?

• Which types?

• Which novel issues?

3



Why Multicores?
The SPECint performance of the hottest chip grew by 52% per year from 1986 to 2002, and 

then grew only 20% in the next three years (about 6% per year). 

Diminishing returns from 

uniprocessor designs

[from Patterson & Hennessy]
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Power Wall

• The design goal for the late 

1990’s and early 2000’s was to 

drive the clock rate up. 

• by adding more transistors 

to a smaller chip.

[from Patterson & Hennessy]

• Unfortunately, this increased 

the power dissipation of the 

CPU chip beyond the capacity 

of inexpensive cooling 

techniques
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Roadmap for CPU Clock Speed: Circa 2005

Here is the result of the best thought in 2005. By 2015, the clock speed

of the top “hot chip” would be in the 20 – 25 GHz range.

[from Patterson & Hennessy]
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The CPU Clock Speed Roadmap 

(A Few Revisions Later)

This reflects the practical experience gained with dense chips that were literally

“hot”; they radiated considerable thermal power and were difficult to cool.

Law of Physics: All electrical power consumed is eventually radiated as heat.

[from Patterson & Hennessy]
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The Multicore Approach

Multiple cores on the same chip

– Simpler

– Slower

– Less power demanding
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Transition to Multicore

Sequential App 
Performance
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Intel Xeon (18cores)



The trend goes on…
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Flynn Taxonomy of parallel computers
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Data streams

Single Parallel

Instruction

Streams

Single SISD SIMD

Multiple MISD MIMD



Alternative Kinds of Parallelism:

Single Instruction/Single Data Stream

• Single Instruction, 

Single Data stream 

(SISD)

– Sequential computer 

that exploits no 

parallelism in either the 

instruction or data 

streams. Examples of 

SISD architecture are 

traditional uniprocessor

machines
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Alternative Kinds of Parallelism:

Multiple Instruction/Single Data Stream

• Multiple Instruction, 

Single Data streams 

(MISD)

– Computer that exploits 

multiple instruction 

streams against a single 

data stream for data 

operations that can be 

naturally parallelized. For 

example, certain kinds of 

array processors.

– No longer commonly 

encountered, mainly of 

historical interest only 13



Alternative Kinds of Parallelism:

Single Instruction/Multiple Data Stream

• Single Instruction, 
Multiple Data streams 
(SIMD)

– Computer that exploits 
multiple data streams 
against a single 
instruction stream to 
operations that may be 
naturally parallelized, 
e.g., SIMD instruction 
extensions or Graphics 
Processing Unit (GPU)
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Alternative Kinds of Parallelism:

Multiple Instruction/Multiple Data Streams

• Multiple Instruction, 

Multiple Data streams 

(MIMD)

– Multiple autonomous 

processors simultaneously 

executing different 

instructions on different 

data. 

– MIMD architectures 

include multicore and 

Warehouse Scale 

Computers (datacenters)
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Flynn Taxonomy of parallel computers

• From 2011, SIMD and MIMD most common parallel computers

• Most common parallel processing programming style: Single 

Program Multiple Data (“SPMD”)
– Single program that runs on all processors of a MIMD

– Cross-processor execution coordination through conditional expressions 

(thread parallelism)

• SIMD (aka hw-level data parallelism): specialized function units, 

for handling lock-step calculations involving arrays
– Scientific computing, signal processing, multimedia (audio/video processing)
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Data streams

Single Parallel

Instruction

Streams

Single SISD: Intel Pentium 4 SIMD: SSE x86, ARM neon, GPGPUs, …

Multiple MISD: No examples today MIMD: SMP (Intel, ARM, …)



SIMD Architectures
• Data parallelism: executing one operation on 

multiple data streams
– Single control unit
– Multiple datapaths (processing elements – PEs) 

running in parallel
• PEs are interconnected and exchange/share data as directed 

by the control unit
• Each PE performs the same operation on its own local data

• Example to provide context:
– Multiplying a coefficient vector by a data vector 

(e.g., in filtering)
y[i] := c[i] × x[i], 0 ≤ i < n

Slide 17
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“Advanced Digital Media Boost”

• To improve performance, SIMD instructions

– Fetch one instruction, do the work of multiple instructions



Example: SIMD Array Processing
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for each f in array
f = sqrt(f)

for each f in array
{

load f to the floating-point register
calculate the square root
write the result from the register to memory

}

for each 4 members in array
{

load 4 members to the SIMD register
calculate 4 square roots in one operation
write the result from the register to memory

}

SISD

SIMD



Data Level Parallelism and SIMD

• SIMD wants adjacent values in memory that 

can be operated in parallel

• Usually specified in programs as loops

for(i=1000; i>0; i=i-1)

x[i] = x[i] + s;

• How to obtain more data level parallelism 

than available in a single iteration of a loop?

• Unroll loop and adjust iteration rate
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Loop Unrolling

Loop Unrolling can be implemented from C code

for(i=1000; i>0; i=i-1)
x[i] = x[i] + s;

into

for(i=1000; i>0; i=i-4)
{
x[ i ] = x[ i ] + s; 
x[i-1] = x[i-1] + s;  
x[i-2] = x[i-2] + s; 
x[i-3] = x[i-3] + s;

}
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Loop Unrolling (MIPS)

Assumptions: 

- R1 is initially the address of the element in the array with the highest 

address

- F2 contains the scalar value s

- 8(R2) is the address of the last element to operate on.

Loop:

1. l.d F0, 0(R1) ; F0=array element

2. add.d F4,F0,F2 ; add s to F0

3. s.d F4,0(R1) ; store result

4. addui R1,R1,#-8 ; decrement pointer 8 byte 

5. bne R1,R2,Loop ; repeat loop if R1 != R2

for(i=1000; i>0; i=i-1)

x[i] = x[i] + s;
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Loop Unrolled

Loop: l.d F0,0(R1)           

add.d F4,F0,F2           

s.d F4,0(R1)

l.d F6,-8(R1)          

add.d F8,F6,F2           

s.d F8,-8(R1)

l.d F10,-16(R1)      

add.d F12,F10,F2       

s.d F12,-16(R1)

l.d F14,-24(R1)      

add.d F16,F14,F2       

s.d F16,-24(R1)

addui R1,R1,#-32

bne R1,R2,Loop

NOTE:

1. Different Registers eliminate stalls 

2. Only 1 Loop Overhead every 4 iterations

3. This unrolling works if loop_limit(mod 4) = 0
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Loop Unrolled Scheduled

4 Loads side-by-side: Could replace with 4 wide SIMD 

Load

4 Adds side-by-side: Could replace with 4 wide SIMD Add

4 Stores side-by-side: Could replace with 4 wide SIMD Store

Loop: l.d F0,0(R1)            

l.d F6,-8(R1)           

l.d F10,-16(R1)       

l.d F14,-24(R1)       

add.d F4,F0,F2            

add.d F8,F6,F2            

add.d F12,F10,F2        

add.d F16,F14,F2        

s.d F4,0(R1)

s.d F8,-8(R1)

s.d F12,-16(R1)

s.d F16,-24(R1)

addui R1,R1,#-32

bne R1,R2,Loop
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Generalizing Loop Unrolling

• A loop of n iterations

• k copies of the body of the loop

Then we will run the loop with 1 copy of the 

body n(mod k) times and 

with k copies of the body floor(n/k) times
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MIMD Architectures

• Multicore architectures

• At least 2 processors interconnected via a 

communication network

– abstractions (HW/SW interface)

– organizational structure to realize abstraction efficiently



MIMD Architectures

• Thread-Level parallelism
– Have multiple program counters

– Targeted for tightly-coupled shared-memory 
multiprocessors

• For n processors, need n threads

• Amount of computation assigned to each thread 
= grain size
– Threads can be used for data-level parallelism, but the 

overheads may outweigh the benefit
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MIMD Architectures

• And what about memory?

• How is data accessed by multiple cores?

• How to design accordingly the memory 
system?

• How do traditional solutions from 
uniprocessor systems affect multicores?
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The Memory Gap

• Bottom-line: memory access is increasingly expensive and 
CA must devise new ways of hiding this cost

H&P

Fig. 5.2
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The memory wall

• How do multicores attack the memory wall?

• Same issue as uniprocessor systems

– By building on-chip cache hierarchies
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Memory Hierarchy
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The memory wall

• How do multicores attack the memory wall?

• Same issue as uniprocessor systems

– By building on-chip cache hierarchies

• Which novel issues arise?

– Coherence

– Consistency

– Scalability

32
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Communication models: Shared Memory

• Coherence problem
• Memory consistency issue
• Synchronization problem
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Communication models: Shared memory

• Shared address space

• Communication primitives:

– load, store, atomic swap

Two varieties: 

• Physically shared => Symmetric Multi-Processors 

(SMP)

– usually combined with local caching

• Physically distributed => Distributed Shared Memory 

(DSM)
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SMP: Symmetric Multi-Processor

• Memory: centralized with uniform access time (UMA) and bus 

interconnect, I/O

• Examples: Sun Enterprise 6000, SGI Challenge, Intel 
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DSM: Distributed Shared Memory

• Nonuniform access time (NUMA) and scalable 

interconnect (distributed memory)



37

Shared Address Model Summary

• Each processor can address every physical location in 

the machine

• Each process can address all data it shares with other 

processes

• Data transfer via load and store

• Data size: byte, word, ... or cache blocks

• Memory hierarchy model applies:

– communication moves data to local proc. cache
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Communication models: Message Passing

• Communication primitives

– e.g., send, receive library calls

– standard MPI: Message Passing Interface 

• www.mpi-forum.org

• Note that MP can be built on top of SM and viceversa!
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Message Passing Model

• Explicit message send and receive operations

• Send specifies local buffer + receiving process on 

remote computer 

• Receive specifies sending process on remote 

computer  + local buffer to place data

• Typically blocking communication, but may use DMA
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Message passing communication
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Communication Models: Comparison
• Shared-Memory (used by e.g. OpenMP)

– Compatibility with well-understood (language) mechanisms

– Ease of programming for complex or dynamic communications 

patterns

– Shared-memory applications; sharing of large data structures

– Efficient for small items

– Supports hardware caching

• Messaging Passing (used by e.g. MPI)

– Simpler hardware

– Explicit communication

– Implicit synchronization (with any communication)
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Three fundamental issues for shared 

memory multiprocessors
• Coherence, 

about: Do I see the most recent data?

• Consistency, 
about: When do I see a written value?

– e.g. do different processors see writes at the same time 
(w.r.t. other memory accesses)?

• Synchronization
How to synchronize processes?

– how to protect access to shared data?
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Three fundamental issues for shared 

memory multiprocessors
• Coherence, 

about: Do I see the most recent data?

• Consistency, 
about: When do I see a written value?

– e.g. do different processors see writes at the same time 
(w.r.t. other memory accesses)?

• Synchronization
How to synchronize processes?

– how to protect access to shared data?
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Coherence problem, in single CPU system

timet2t1t0
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Coherence problem, in Multi-Proc system
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What Does Coherency Mean?

• Discipline that ensures that changes in the values of 
shared operands are propagated throughout the 
system in a timely fashion

• Different levels are possible:

– Every write operation appears to occur instantaneously

• Too expensive and inefficient

– All processors see exactly the same sequence of changes of 
values for each separate operand

– Different processors may see an operand and assume 
different sequences of values

• non-coherent behavior
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Two rules to ensure coherency

• “If P1 writes x and P2 reads it, P1’s write will be seen 

by P2 if the read and write are sufficiently far apart”

• Writes to a single location are serialized: 

seen in one order

– ‘Latest’ write will be seen

– Otherwise could see writes in illogical order

(could see older value after a newer value)



Shared Memory and Caches

• What if? 

– Processors 1 and 2 read Memory[1000] (value  20)
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Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

1000
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1000 

1000 1000
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0 1 2



Shared Memory and Caches

• What if? 

– Processors 1 and 2 read Memory[1000]

– Processor 0 writes Memory[1000] with 40
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Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

Processor 0

Write

Invalidates

Other Copies

1000

1000 40

1000 40



Keeping Multiple Caches Coherent

• Architect’s job: shared memory => keep cache values 

coherent

• Idea: When any processor has cache miss or writes, 

notify other processors via interconnection network

– If only reading, many processors can have copies

– If a processor writes, invalidate all other copies

• Shared written result can “ping-pong” between 

caches
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Shared Memory Multiprocessor

Use snoopy mechanism to keep all processors’ view of memory 
coherent

M1

M2

M3

Snoopy
Cache

DMA

Physical
Memory

Memory
Bus

Snoopy
Cache

Snoopy
Cache

DISKS
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Snoopy Cache Coherence Protocols

write miss:
the address is invalidated in all other
caches before the write is performed

read miss:
if a dirty copy is found in some cache, a write-
back is performed before the memory is read  



MSI Protocol States

• Modified: The cache modified the block

– The data in the cache is inconsistent with the 
backing store (e.g., main memory)

– Cache must write-back the block when evicted

• Shared: The block is unmodified

– The cache can evict the data without writing it to 
the backing store.

• Invalid: The block is not present in the cache

– It must be fetched from memory or another cache
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Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
I: Invalid

Each cache line has state bits

Address tag

state
bits Write miss

(P1 gets line from memory)

Other processor
intent to write 
(P1 writes back)

Read miss
(P1 gets line from memory)

Other processor
intent to write

Read by any
processor

P1 reads
or writes

Cache state in 
processor P1

Other processor reads
(P1 writes back)
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Two Processor Example
(Reading and writing the same cache line)

M

S I

Write miss

Read
miss

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

Read
miss

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads

P1 writes

P2 reads
P2 writes

P1 writes

P2 writes

P1 reads

P1 writes
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Observation

• If a line is in the M state then no other cache 
can have a copy of the line!
– Memory stays coherent, multiple differing copies 

cannot exist

M

S I

Write miss

Other processor
intent to write

Read
miss

Other processor
intent to write

Read by any
processor

P1 reads
or writes

Other processor reads
P1 writes back



MESI: An Enhanced MSI protocol

• Adds an E state to MSI

– Exclusive but unmodified 

– Data is only in this cache and is clean

• It matches main memory

– A read request from another cache will change it 

to Shared

– Writing it will change it to Modified

• No invalidation needed since it was exclusive!

• Increased performance for private data
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MESI: An Enhanced MSI protocol

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
I: Invalid

Each cache line has a tag

Address tag

state
bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
processor

Other processor reads

P1 writes back

P1 read
P1 write
or read

Cache state in 
processor P1

P1 intent 
to write

Read miss, 
not sharedOther 

processor
reads

Other processor 
intent to write, 
P1 writes back



Considerations on MESI

• A read can be satisfied in any state except Invalid
– An Invalid line must be fetched to S or E state

• A write can be satisfied in M or E
– A Shared line must first invalidate other copies

• Broadcast operation: Request For Ownership (RFO)

• S,E,I lines can be always discarded
– A Modified line must be written back first

• A Modified line must snoop other read attempts
– Back-off the reader, write-back, and change to Shared

• A Shared line must listen for invalidate/RFO requests 
– Change to Invalid 

• An Exclusive line must listen for read requests 
– Change to Shared
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Performance of Symmetric 

Shared-Memory Multiprocessors

Cache performance is combination of:

1. Uniprocessor cache miss traffic

2. Traffic caused by communication 
– Results in invalidations and subsequent cache misses

• Adds 4th C: coherence miss

– Joins Compulsory, Capacity, Conflict

– (Sometimes called a Communication miss)
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Coherency Misses

1. True sharing misses arise from the communication of 
data through the cache coherence mechanism
• Invalidates due to 1st write to shared block

• Reads by another CPU of modified block in different cache

• Miss would still occur if block size were 1 word

2. False sharing misses when a block is invalidated 
because some word in the block, other than the one 
being read, is written into
• Invalidation does not cause a new value to be 

communicated, but only causes an extra cache miss

• Block is shared, but no word in block is actually shared
⇒ miss would not occur if block size were 1 word
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False Sharing

state   blk addr  data0 data1        ...     dataN

A cache block contains more than one word

Cache-coherence is done at the block-level and 
not word-level

Suppose M1 writes wordi and M2 writes wordk and
both words have the same block address.

What can happen?
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Example: True v. False Sharing v. 

Hit?

Time P1 P2 True, False, Hit? Why?
1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

• Assume x1 and x2 in same cache block. 

P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss
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MP Performance 4 Processor 

Commercial Workload: OLTP, Decision Support (Database), 

Search Engine
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• True sharing and 

false sharing 

unchanged going 

from 1 MB to 8 MB 
(L3 cache)

• Uniprocessor cache 

misses improve with

cache size increase 
(Instruction, 

Capacity/Conflict, 

Compulsory)
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MP Performance 2MB Cache 

Commercial Workload: OLTP, Decision Support 

(Database), Search Engine

• True sharing,

false sharing 

increase going 

from 1 to 8 

CPUs
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A Cache Coherent System Must:
• Provide set of states, state transition diagram, and 

actions

• Manage coherence protocol
– (0)  Determine when to invoke coherence protocol

– (a)  Find info about state of address in other caches to 
determine action

• whether need to communicate with other cached copies

– (b)  Locate the other copies

– (c)  Communicate with those copies  (invalidate/update)

• (0) is done the same way on all systems
– state of the line is maintained in the cache

– protocol is invoked if an “access fault” occurs on the line

• Different approaches distinguished by (a) to (c)
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Bus-based Coherence
• All of (a), (b), (c) done through broadcast on bus

– faulting processor sends out a “search” 

– others respond to the search probe and take necessary action

• Could do it in scalable network too
– broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t scale with 
number of processors, P
– on bus, bus bandwidth doesn’t scale

– on scalable network, every fault leads to at least P network 
transactions

• Scalable coherence:
– can have same cache states and state transition diagram

– different mechanisms to manage protocol



Need for a more scalable protocol

• Snoopy schemes do not scale because they rely 
on broadcast

• Hierarchical snoopy schemes have the root as a 
bottleneck

• Directory based schemes allow scaling

– They avoid broadcasts by keeping track of all CPUs 
caching a memory block, and then using point-to-
point messages to maintain coherence

– They allow the flexibility to use any scalable point-to-
point network
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Scalable Approach: Directories

• Every memory block has associated directory 

information

– keeps track of copies of cached blocks and their states

– on a miss, find directory entry, look it up, and 

communicate only with the nodes that have copies if 

necessary

– in scalable networks, communication with directory and 

copies is through network transactions

• Many alternatives for organizing directory 

information
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Basic Operation of Directory

•  k processors.  

•  With each cache-block in memory: 
k  presence-bits, 1 dirty-bit

•  With each cache-block in cache:    
1 valid bit, and 1 dirty (owner) bit

• Read from main memory by processor i:

• If dirty-bit OFF then { read from main memory; turn p[i] ON; }

• if dirty-bit ON   then { recall line from dirty proc (downgrade cache 
state to shared); update memory; turn dirty-bit OFF; turn p[i] ON; 
supply recalled data to i;}

• Write to main memory by processor i:

• If dirty-bit OFF then {send invalidations to all caches that have the 
block; turn dirty-bit ON; turn p[i] ON; ... }


