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the POSIX standard

 is an IEEE standard that specifies an operating system 
interface similar to most UNIX systems

 the standard extends the C language with primitives that 
allow the specification of the concurrency
 POSIX distinguishes between the terms

process and thread
 a process is an address space with one or more threads 

executing in that address space
 a thread is a single flow of control within a process

 every process has at least one thread, the “main()” thread; its 
termination ends the process

 all the threads share the same address space, and have a separate 
stack
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the pthread library

 the pthread primitives are usually implemented into a 
pthread library

 all the declarations of the primitives cited in these slides can 
be found into sched.h, pthread.h and semaphore.h

 use man to get on-line documentation
 when compiling under gcc & GNU/Linux, remember the 
–lpthread option!



thread creation, join, end
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thread body

 a thread is identified by a C function, called body:

void *my_thread(void *arg)

{

  …

}

 a thread starts with the first instruction of its body
 the threads ends when the body function ends

 it's not the only way a thread can die
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thread creation

 threads can be created using the primitive

int pthread_create( pthread_t *ID,

 pthread_attr_t *attr,

 void *(*body)(void *),

 void * arg

    );

 pthread_t is the type that contains the thread ID
 pthread_attr_t is the type that contains the parameters 

of the thread
 arg is the argument passed to the thread body when it 

starts
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thread attributes

 thread attributes specifies the characteristics of a thread
 stack size and address
 detach state (joinable or detached)
 scheduling parameters (priority, …)

 attributes must be initialized and destroyed
 int pthread_attr_init(pthread_attr_t *attr);

 int pthread_attr_destroy(pthread_attr_t *attr);

 Note for NPTL users: the default pthread attribute for the 
NPTL Linux library inherits the parent paremeters. If you are 
playing with attributes with NPTL, always remember to add 
a
 pthread_attr_setinheritsched
(&myattr, PTHREAD_EXPLICIT_SCHED);
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thread termination

 a thread can terminate itself calling

void pthread_exit(void *retval);

 when the thread body ends after the last “}”, 
pthread_exit() is called implicitly

 exception: when main() terminates, exit() is called 
implicitly
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thread IDs

 each thread has a unique ID

 the thread ID of the current thread can be obtained using

pthread_t pthread_self(void);

 two thread IDs can be compared using

int pthread_equal( pthread_t thread1,
 pthread_t thread2  );
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joining a thread

 a thread can wait the termination of another thread using

int pthread_join( pthread_t th,

 void **thread_return);

 it gets the return value of the thread or 
PTHREAD_CANCELED if the thread has been killed

 by default, every task must be joined
 the join frees all the internal resources 

(stack, registers, and so on)
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joining a thread (2)

 a thread which do not need to be joined have to be declared 
as detached.

 2 ways:
 the thread is created as detached using
pthread_attr_setdetachstate()

 the thread become detached calling
pthread_detach()
into its body

 joining a detached thread returns an error
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example 1

 filename: ex_create.c
 the demo explains how to create a thread

 the main() thread creates another thread (called body())
 the body() thread checks the thread Ids using pthread_equal() 

and then ends
 the main() thread joins the body() thread



pthread scheduling
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scheduling algorithms

 the POSIX standard specifies in sched.h at least two 
scheduling strategies which can be used, identified by the 
symbols SCHED_FIFO and SCHED_RR
 also, the sporadic server has been added recently to the standard

 other scheduling policies may be supported by each 
particular implementation, under the symbol SCHED_OTHER
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scheduling algorithms (2)

 POSIX specifies a Fixed Priority scheduler with at least 32 
priorities (0 to 31)

 every priority corresponds to a queue, where all the threads 
with the same priority are inserted

 the first ready thread in the highest 
non-empty priority queue is selected for scheduling and 
become the running thread
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scheduling algorithms (3)

 the running thread is scheduled following its policy
 SCHED_FIFO means the thread is scheduled until it ends, it blocks 

or it is canceled
 SCHED_RR means the thread is scheduled until it ends, it blocks, it is 

canceled or it consumes its quantum
 the quantum sizeis implementation defined

 SCHED_OTHER is implementation defined
 usually it is a UNIX scheduler with aging
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scheduling algorithms (4)

 real time protocols are supported using mutexes
 Priority Ceiling
 Priority Inheritance
 not all the implementations support them

 POSIX leaves unspecified the scheduling order between 
threads belonging to different processes
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POSIX and priorities

 thread priorities can be specified at creation time into the 
thread attributes

 int pthread_attr_setschedpolicy
(pthread_attr_t *a, int policy); 

  policy can be SCHED_RR, SCHED_FIFO or SCHED_OTHER

 int pthread_attr_setschedparam 
(pthread_attr_t *attr,
 const struct sched_param *param); 

 The priority field is param.sched_priority
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real-time and UNIX

 UNIX systems usually schedule all its threads at low 
priorities

 when a RT thread is created, it always preempt all the other 
applications (i.e.  the X server, and all the other demons)

 for that reason,
 real-time computations have to be limited
 only root can use the real-time priorities
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example 2

 filename: ex_rr.c
 the demo explains the behavior of the RT priorities and of 

the other policies
 the main() thread creates an high priority thread that 

activates a low priority thread and two medium priority 
threads

 the medium priority threads are scheduled with policies 
SCHED_RR and SCHED_FIFO

 the low priority thread is always scheduled in background



pthread cancellation
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killing a thread

 a thread can be killed calling
int pthread_cancel(pthread_t thread);
 when a thread dies its data structures will be released

 by the join primitive if the thread is joinable
 immediately if the thread is detached
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pthread cancellation

 specifies how to react to a kill request
 there are two different behaviors:

 deferred cancellation
    when a kill request arrives to a thread, the thread does not die. The 

thread will die only when it will execute a primitive that is a 
cancellation point. This is the default behavior of a thread.

 asynchronous cancellation
    when a kill request arrives to a thread, the thread dies. The 

programmer must ensure that all the application data structures are 
coherent.
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cancellation states and cleanups

 the user can set the cancellation state of a thread using:
int pthread_setcancelstate(int state,int *oldstate);

int pthread_setcanceltype(int type, int *oldtype);

 the user can protect some regions providing destructors to 
be executed in case of cancellation

int pthread_cleanup_push(void (*routine)(void *), 

  void *arg);

int pthread_cleanup_pop(int execute);
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cancellation points

 the cancellation points are primitives that can potentially 
block a thread; when called, if there is a kill request 
pending the thread will die 
 void pthread_testcancel(void);
 sem_wait, pthread_cond_wait, printf and all the I/O 

primitives are cancellation points
 pthread_mutex_lock, is NOT a canc. point
 a complete list can be found into the POSIX Std
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cleanup handlers

 the user must guarantee that when a thread is killed, the 
application data remains coherent.

 the user can protect the application code using cleanup 
handlers
 a cleanup handler is an user function that cleans up the application 

data
 they are called when the thread ends and when it is killed
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cleanup handlers (2)

 void pthread_cleanup_push
(void (*routine)(void *), void *arg);

 void pthread_cleanup_pop(int execute);

 they are pushed and popped as in a stack
 if execute!=0 the cleanup handler is called when popped
 the cleanup handlers are called in LIFO order
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example 3

 filename: ex_cancellation.c
 highlights the behavior of:

 asynchronous cancellation
 deferred cancellation

 explains the cleanup handlers usage



semaphores
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semaphores

 a semaphore is a counter managed with a set of primitives
 it is used for

 synchronization
 mutual exclusion

 POSIX Semaphores can be
 unnamed (local to a process)
 named (shared between processed through a file descriptor)
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unnamed semaphores

 mainly used with multithread applications
 operations permitted:

 initialization /destruction
 blocking wait / nonblocking wait

 counter decrement
 post

 counter increment
 counter reading

 simply returns the counter
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initializing a semaphore

 the sem_t type contains all the semaphore data structures

int sem_init(sem_t *sem, int pshared, unsigned 
int value);
 pshared is 0 if sem is not shared between processes

int sem_destroy(sem_t *sem)
 it destroys the sem semaphore
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semaphore waits

 int sem_wait(sem_t *sem);
 int sem_trywait(sem_t *sem);

 if the counter is greater than 0 the thread does not block
 sem_trywait never blocks

 sem_wait is a cancellation point
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other semaphore primitives

int sem_post(sem_t *sem);
 it increments the semaphore counter
 it unblocks a waiting thread

int sem_getvalue(sem_t *sem,int *val);
 it simply returns the semaphore counter
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example 4

 filename: ex_sem.c
 in this example, semaphores are used to implement mutual 

exclusion in the output of a character in the console.



pthread mutexes
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what is a POSIX mutex?

 think at a mutex as a binary semaphore used for mutual 
exclusion
 with the restriction that a mutex can be unlocked only by the thread 

that locked it
 mutexes also support some RT protocols

 priority inheritance
 priority ceiling
 they are not implemented under a lot of UNIX OS
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mutex attributes

 mutex attributes are used to initialize a mutex
 int pthread_mutexattr_init 
(pthread_mutexattr_t *attr);

 int pthread_mutexattr_destroy 
(pthread_mutexattr_t *attr);
 initialization and destruction of a mutex attribute
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mutex attributes (2)

int pthread_mutexattr_setprotocol 
(pthread_mutexattr_t *attr, int protocol);
 protocol can be PTHREAD_PRIO_NONE, 
PTHREAD_PRIO_INHERIT, PTHREAD_PRIO_PROTECT

 int pthread_mutexattr_setprioceiling 
(pthread_mutexattr_t *attr, int pceiling);
 set the priority ceiling of a PTHREAD_PRIO_PROTECT mutex
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mutex initialization

int pthread_mutex_init (pthread_mutex_t 
*mutex, const pthread_mutexattr_t *attr);
 initializes a mutex with a given mutex attribute

 int pthread_mutex_destroy
  (pthread_mutex_t *mutex);
 destroys a mutex
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mutex lock and unlock

int pthread_mutex_lock(pthread_mutex_t *m);
int pthread_mutex_trylock(pthread_mutex_t *m);
int pthread_mutex_unlock(pthread_mutex_t *m);

 this primitives implement the blocking lock, the non-blocking lock 
and the unlock of a mutex

 the mutex lock is NOT a cancellation point
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example 5

 filename: ex_mutex.c
 this is example 4 written using mutexes instead of 

semaphores.



pthread condition variables
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what is a POSIX condition variable?

 condition variables are used to enforce synchronization 
between threads
 a thread into a mutex critical section can wait on a condition 

variable
 when waiting, the mutex is automatically released and locked again 

at wake up
 the synchronization point have to be checked into a loop!
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cancellation and mutexes

 mutexes are not cancellation points
 the condition wait is a cancellation point
 when a thread is killed while blocked on a condition 

variable, the mutex is locked again before dying
 a cleanup function must be used to protect the thread from a 

cancellation
 if they are not used, the mutex is left locked, and no thread can use 

it anymore!
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condition variable attribute

 attributes are used to initialize a condition variable

 int pthread_condattr_init (pthread_condattr_t 
*attr);

 int pthread_condattr_destroy 
(pthread_condattr_t *attr);
 these functions initialize and destroy a condition variable
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initializing and destroying a condition variable

 to be used, a condition variable must be initialized
 int pthread_cond_init (pthread_cond_t *cond, 
const pthread_condattr_t *attr)

 …and destroyed when it is no more needed
 int pthread_cond_destroy(pthread_cond_t 
*cond)
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waiting for a condition

int pthread_cond_wait (pthread_cond_t 
*cond, pthread_mutex_t *mutex);

 every condition variable is implicitly linked to a mutex
 given a condition variable, the mutex parameter must always be the 

same
 note: the condition wait must always be called into a loop 

protected by a cleanup handler!!!
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signaling a condition

 int pthread_cond_signal(pthread_cond_t 
*cond);

 int pthread_cond_broadcast(pthread_cond_t 
*cond);

 these functions wakes up at least one (signal) or all 
(broadcast) the thread blocked on the condition variable

 the thread should lock the associated mutex when calling 
these functions

 nothing happens if no thread is blocked on the condition 
variable 
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example 6

 filename: ex_cond.c
 this is Example 4 written using simulated semaphores 

obtained using mutexes and condition variables
 a simulated semaphore is composed by a counter, a mutex 

and a condition variable
 the functions lock the mutex to work with the counter and 

use the condition variable to block
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