
real-time operating systems course

4
introduction to POSIX pthread programming

introduction – thread creation, join, end – thread
scheduling – thread cancellation – semaphores – thread

mutexes and condition variables

introduction to POSIX pthread
programming

3

the POSIX standard

 is an IEEE standard that specifies an operating system
interface similar to most UNIX systems

 the standard extends the C language with primitives that
allow the specification of the concurrency
 POSIX distinguishes between the terms

process and thread
 a process is an address space with one or more threads

executing in that address space
 a thread is a single flow of control within a process

 every process has at least one thread, the “main()” thread; its
termination ends the process

 all the threads share the same address space, and have a separate
stack

4

the pthread library

 the pthread primitives are usually implemented into a
pthread library

 all the declarations of the primitives cited in these slides can
be found into sched.h, pthread.h and semaphore.h

 use man to get on-line documentation
 when compiling under gcc & GNU/Linux, remember the
–lpthread option!

thread creation, join, end

6

thread body

 a thread is identified by a C function, called body:

void *my_thread(void *arg)

{

 …

}

 a thread starts with the first instruction of its body
 the threads ends when the body function ends

 it's not the only way a thread can die

7

thread creation

 threads can be created using the primitive

int pthread_create(pthread_t *ID,

 pthread_attr_t *attr,

 void *(*body)(void *),

 void * arg

);

 pthread_t is the type that contains the thread ID
 pthread_attr_t is the type that contains the parameters

of the thread
 arg is the argument passed to the thread body when it

starts

8

thread attributes

 thread attributes specifies the characteristics of a thread
 stack size and address
 detach state (joinable or detached)
 scheduling parameters (priority, …)

 attributes must be initialized and destroyed
 int pthread_attr_init(pthread_attr_t *attr);

 int pthread_attr_destroy(pthread_attr_t *attr);

 Note for NPTL users: the default pthread attribute for the
NPTL Linux library inherits the parent paremeters. If you are
playing with attributes with NPTL, always remember to add
a
 pthread_attr_setinheritsched
(&myattr, PTHREAD_EXPLICIT_SCHED);

9

thread termination

 a thread can terminate itself calling

void pthread_exit(void *retval);

 when the thread body ends after the last “}”,
pthread_exit() is called implicitly

 exception: when main() terminates, exit() is called
implicitly

10

thread IDs

 each thread has a unique ID

 the thread ID of the current thread can be obtained using

pthread_t pthread_self(void);

 two thread IDs can be compared using

int pthread_equal(pthread_t thread1,
 pthread_t thread2);

11

joining a thread

 a thread can wait the termination of another thread using

int pthread_join(pthread_t th,

 void **thread_return);

 it gets the return value of the thread or
PTHREAD_CANCELED if the thread has been killed

 by default, every task must be joined
 the join frees all the internal resources

(stack, registers, and so on)

12

joining a thread (2)

 a thread which do not need to be joined have to be declared
as detached.

 2 ways:
 the thread is created as detached using
pthread_attr_setdetachstate()

 the thread become detached calling
pthread_detach()
into its body

 joining a detached thread returns an error

13

example 1

 filename: ex_create.c
 the demo explains how to create a thread

 the main() thread creates another thread (called body())
 the body() thread checks the thread Ids using pthread_equal()

and then ends
 the main() thread joins the body() thread

pthread scheduling

15

scheduling algorithms

 the POSIX standard specifies in sched.h at least two
scheduling strategies which can be used, identified by the
symbols SCHED_FIFO and SCHED_RR
 also, the sporadic server has been added recently to the standard

 other scheduling policies may be supported by each
particular implementation, under the symbol SCHED_OTHER

16

scheduling algorithms (2)

 POSIX specifies a Fixed Priority scheduler with at least 32
priorities (0 to 31)

 every priority corresponds to a queue, where all the threads
with the same priority are inserted

 the first ready thread in the highest
non-empty priority queue is selected for scheduling and
become the running thread

17

scheduling algorithms (3)

 the running thread is scheduled following its policy
 SCHED_FIFO means the thread is scheduled until it ends, it blocks

or it is canceled
 SCHED_RR means the thread is scheduled until it ends, it blocks, it is

canceled or it consumes its quantum
 the quantum sizeis implementation defined

 SCHED_OTHER is implementation defined
 usually it is a UNIX scheduler with aging

18

scheduling algorithms (4)

 real time protocols are supported using mutexes
 Priority Ceiling
 Priority Inheritance
 not all the implementations support them

 POSIX leaves unspecified the scheduling order between
threads belonging to different processes

19

POSIX and priorities

 thread priorities can be specified at creation time into the
thread attributes

 int pthread_attr_setschedpolicy
(pthread_attr_t *a, int policy);

 policy can be SCHED_RR, SCHED_FIFO or SCHED_OTHER

 int pthread_attr_setschedparam
(pthread_attr_t *attr,
 const struct sched_param *param);

 The priority field is param.sched_priority

20

real-time and UNIX

 UNIX systems usually schedule all its threads at low
priorities

 when a RT thread is created, it always preempt all the other
applications (i.e. the X server, and all the other demons)

 for that reason,
 real-time computations have to be limited
 only root can use the real-time priorities

21

example 2

 filename: ex_rr.c
 the demo explains the behavior of the RT priorities and of

the other policies
 the main() thread creates an high priority thread that

activates a low priority thread and two medium priority
threads

 the medium priority threads are scheduled with policies
SCHED_RR and SCHED_FIFO

 the low priority thread is always scheduled in background

pthread cancellation

23

killing a thread

 a thread can be killed calling
int pthread_cancel(pthread_t thread);
 when a thread dies its data structures will be released

 by the join primitive if the thread is joinable
 immediately if the thread is detached

24

pthread cancellation

 specifies how to react to a kill request
 there are two different behaviors:

 deferred cancellation
 when a kill request arrives to a thread, the thread does not die. The

thread will die only when it will execute a primitive that is a
cancellation point. This is the default behavior of a thread.

 asynchronous cancellation
 when a kill request arrives to a thread, the thread dies. The

programmer must ensure that all the application data structures are
coherent.

25

cancellation states and cleanups

 the user can set the cancellation state of a thread using:
int pthread_setcancelstate(int state,int *oldstate);

int pthread_setcanceltype(int type, int *oldtype);

 the user can protect some regions providing destructors to
be executed in case of cancellation

int pthread_cleanup_push(void (*routine)(void *),

 void *arg);

int pthread_cleanup_pop(int execute);

26

cancellation points

 the cancellation points are primitives that can potentially
block a thread; when called, if there is a kill request
pending the thread will die
 void pthread_testcancel(void);
 sem_wait, pthread_cond_wait, printf and all the I/O

primitives are cancellation points
 pthread_mutex_lock, is NOT a canc. point
 a complete list can be found into the POSIX Std

27

cleanup handlers

 the user must guarantee that when a thread is killed, the
application data remains coherent.

 the user can protect the application code using cleanup
handlers
 a cleanup handler is an user function that cleans up the application

data
 they are called when the thread ends and when it is killed

28

cleanup handlers (2)

 void pthread_cleanup_push
(void (*routine)(void *), void *arg);

 void pthread_cleanup_pop(int execute);

 they are pushed and popped as in a stack
 if execute!=0 the cleanup handler is called when popped
 the cleanup handlers are called in LIFO order

29

example 3

 filename: ex_cancellation.c
 highlights the behavior of:

 asynchronous cancellation
 deferred cancellation

 explains the cleanup handlers usage

semaphores

31

semaphores

 a semaphore is a counter managed with a set of primitives
 it is used for

 synchronization
 mutual exclusion

 POSIX Semaphores can be
 unnamed (local to a process)
 named (shared between processed through a file descriptor)

32

unnamed semaphores

 mainly used with multithread applications
 operations permitted:

 initialization /destruction
 blocking wait / nonblocking wait

 counter decrement
 post

 counter increment
 counter reading

 simply returns the counter

33

initializing a semaphore

 the sem_t type contains all the semaphore data structures

int sem_init(sem_t *sem, int pshared, unsigned
int value);
 pshared is 0 if sem is not shared between processes

int sem_destroy(sem_t *sem)
 it destroys the sem semaphore

34

semaphore waits

 int sem_wait(sem_t *sem);
 int sem_trywait(sem_t *sem);

 if the counter is greater than 0 the thread does not block
 sem_trywait never blocks

 sem_wait is a cancellation point

35

other semaphore primitives

int sem_post(sem_t *sem);
 it increments the semaphore counter
 it unblocks a waiting thread

int sem_getvalue(sem_t *sem,int *val);
 it simply returns the semaphore counter

36

example 4

 filename: ex_sem.c
 in this example, semaphores are used to implement mutual

exclusion in the output of a character in the console.

pthread mutexes

38

what is a POSIX mutex?

 think at a mutex as a binary semaphore used for mutual
exclusion
 with the restriction that a mutex can be unlocked only by the thread

that locked it
 mutexes also support some RT protocols

 priority inheritance
 priority ceiling
 they are not implemented under a lot of UNIX OS

39

mutex attributes

 mutex attributes are used to initialize a mutex
 int pthread_mutexattr_init
(pthread_mutexattr_t *attr);

 int pthread_mutexattr_destroy
(pthread_mutexattr_t *attr);
 initialization and destruction of a mutex attribute

40

mutex attributes (2)

int pthread_mutexattr_setprotocol
(pthread_mutexattr_t *attr, int protocol);
 protocol can be PTHREAD_PRIO_NONE,
PTHREAD_PRIO_INHERIT, PTHREAD_PRIO_PROTECT

 int pthread_mutexattr_setprioceiling
(pthread_mutexattr_t *attr, int pceiling);
 set the priority ceiling of a PTHREAD_PRIO_PROTECT mutex

41

mutex initialization

int pthread_mutex_init (pthread_mutex_t
*mutex, const pthread_mutexattr_t *attr);
 initializes a mutex with a given mutex attribute

 int pthread_mutex_destroy
 (pthread_mutex_t *mutex);
 destroys a mutex

42

mutex lock and unlock

int pthread_mutex_lock(pthread_mutex_t *m);
int pthread_mutex_trylock(pthread_mutex_t *m);
int pthread_mutex_unlock(pthread_mutex_t *m);

 this primitives implement the blocking lock, the non-blocking lock
and the unlock of a mutex

 the mutex lock is NOT a cancellation point

43

example 5

 filename: ex_mutex.c
 this is example 4 written using mutexes instead of

semaphores.

pthread condition variables

45

what is a POSIX condition variable?

 condition variables are used to enforce synchronization
between threads
 a thread into a mutex critical section can wait on a condition

variable
 when waiting, the mutex is automatically released and locked again

at wake up
 the synchronization point have to be checked into a loop!

46

cancellation and mutexes

 mutexes are not cancellation points
 the condition wait is a cancellation point
 when a thread is killed while blocked on a condition

variable, the mutex is locked again before dying
 a cleanup function must be used to protect the thread from a

cancellation
 if they are not used, the mutex is left locked, and no thread can use

it anymore!

47

condition variable attribute

 attributes are used to initialize a condition variable

 int pthread_condattr_init (pthread_condattr_t
*attr);

 int pthread_condattr_destroy
(pthread_condattr_t *attr);
 these functions initialize and destroy a condition variable

48

initializing and destroying a condition variable

 to be used, a condition variable must be initialized
 int pthread_cond_init (pthread_cond_t *cond,
const pthread_condattr_t *attr)

 …and destroyed when it is no more needed
 int pthread_cond_destroy(pthread_cond_t
*cond)

49

waiting for a condition

int pthread_cond_wait (pthread_cond_t
*cond, pthread_mutex_t *mutex);

 every condition variable is implicitly linked to a mutex
 given a condition variable, the mutex parameter must always be the

same
 note: the condition wait must always be called into a loop

protected by a cleanup handler!!!

50

signaling a condition

 int pthread_cond_signal(pthread_cond_t
*cond);

 int pthread_cond_broadcast(pthread_cond_t
*cond);

 these functions wakes up at least one (signal) or all
(broadcast) the thread blocked on the condition variable

 the thread should lock the associated mutex when calling
these functions

 nothing happens if no thread is blocked on the condition
variable

51

example 6

 filename: ex_cond.c
 this is Example 4 written using simulated semaphores

obtained using mutexes and condition variables
 a simulated semaphore is composed by a counter, a mutex

and a condition variable
 the functions lock the mutex to work with the counter and

use the condition variable to block

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

